Adaptive Branch Selection for Accelerate Image Super-Resolution

Cheng Ding?, Zhong-Qiu Zhao*"*", Hao Shen’

4School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, China
bIntelligent Interconnected Systems Laboratory of Anhui Province (Hefei University of Technology), China
“Guangxi Academy of Sciences, China

dSchool of Public Security and Emergency Management, Anhui University of Science and Technology, Hefei,
231131, Anhui, China

Abstract. In practical applications, image resolution has already reached 4K. However, large images often contain
many smooth regions that can achieve good performance using networks with fewer channels. Existing methods for
accelerating SR models typically divide images into multiple patches and process them through separate branches.
However, these approaches suffer from two limitations:(1) The lack of scalability to be developed on platforms with
different capacities. (2) The lack of interaction between multiple branches results in limited acceleration performance.
Based on this, we propose Adaptive Branch Selection (ABS) for accelerating image super-resolution. ABS utilizes an
efficient regressor to predict the performance increment between branches, dynamically selecting different branches
for each patch by adjusting thresholds. To further enhance the acceleration performance, we introduce Progressive
Mutual Information Knowledge Distillation (PMID) to help improve the SR performance of branches with fewer
channels. Experimental results on the Test8K dataset show that FSRCNN-ABS achieves performance comparable to
the original model while using only 49% of the FLOPs.
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1 Introduction

Single Image Super-Resolution(SISR) is an advanced technique that aims to generate a high-
resolution image from a low-resolution input. The evolution of convolutional neural networks
(CNNs) has spurred the development of numerous effective methods aimed at addressing this in-
herently ill-posed problem.! Existing methods*? primarily enhance performance by increasing the
number of network blocks,* refining the attention mechanism,’ introducing the transformer archi-
tecture, and other approaches.” However, these small improvements double the computation cost
of the network, which hinders real-world applications. Particularly within fields like surveillance
and video transmission, image resolutions have already reached ultra-high-definition (UHD), e.g.,
4K (3840x2160). Taking the large image as input and reconstructing the intermediate features in

the UHD space significantly increases both memory consumption and computational costs.
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Fig. 1 PSNR results vs. the total FLOPs of different methods for single image SR(x4) on Test8K dataset.
In recent years, researchers have focused on proposing lightweight networks to enhance effi-
ciency in image super-resolution. Some methods introduced spatially adaptive feature modulation

%19 and multi-scale feature cascading’ to achieve efficient feature extraction. Other

mechanisms
approaches concentrated on proposing new upsampling layers'! to replace traditional deconvolu-
tion layers. In addition to special structural designs, some model compression strategies, such as

12.13 and model quantization,'* have also been applied in the field of image

knowledge distillation
super-resolution. These methods offer effective strategies to balance performance and resource
consumption, making them suitable for resource-limited devices. However, the aforementioned
methods neglect to consider the sparsity in images. A significant portion of natural images con-
sists of smooth regions that only require less processing to achieve good performance.

Following the introduction of RAISR, '3 researchers have started to employ various strategies'®

to handle different regions of images. Overall, the mainstream methods are primarily categorized

into pixel-based methods and patch-based methods. The pixel-based method directly divides the



image into different pixel regions, which often have irregular shapes. However, since convolu-
tional kernels are rectangular, they are not well-suited for convolution operations on such irregular
regions, resulting in limited acceleration performance. The patch-based'” method first divides the
image into rectangular patches of the same size, and then uses different modules to process each
patch separately. ClassSR'® proposed a patch classification strategy to route different patches into
different branches, where each branch had the same structure but with different channel numbers.
Although this approach effectively improves the model’s efficiency, the interaction between dif-
ferent branches is not considered. ARM' established a supernet that uses an edge-to-PSNR LUT
(look-up table) to divide different patches into various subnets. However, LUT-based methods
require a considerable amount of storage memory to store the look-up table. While the aforemen-
tioned methods reduce the model’s FLOPs through various approaches, they are unscalable and
fail to train one single network to adapt to devices with different resource constraints.

To address the above issues, we propose an Adaptive Branch Selection (ABS) for Accelerate
Image Super-Resolution. From Fig. 1, we can observe that our ABS maintains comparable perfor-
mance to the original model while reducing the model’s FLOPs. Moreover, ABS achieves a greater
reduction in FLOPs when applied to FreqFormer, which is a Transformer-based super-resolution
method. Our ABS contains three branches, which have identical architectures but differ in the
number of channels. Considering the interactions between each branch, we employ PMID (Pro-
gressive Mutual Information Knowledge Distillation) to improve the feature extraction capabilities
of the branches with fewer channel numbers. After that, we train a lightweight regressor to predict
the performance increments between different branches. During testing, the input LR image is
first divided into multiple patches. By setting thresholds, various patches of a single image are

distributed to different branches to save computational resources. Finally, all the patches output



from the branches will be merged into a single SR image.

1.1 Contributions

The main contributions of our paper are summarized as follows:

* We propose a novel SR accelerate framework that utilizes a lightweight regressor to dis-

tribute multiple patches into different branches for model efficiency.

* We adopt progressive mutual information knowledge distillation to enhance the performance

of the branch with fewer channels in the ABS.

* We conduct quantitative and qualitative evaluations on multiple benchmark datasets, which

demonstrate the superiority of our ABS.

2 Related Works
2.1 CNN-based Super Resolution Methods

With the development of deep learning, SRCNN?’ was the first to introduce a convolutional neural
network for solving image super-resolution. Following this, VDSR?! and DRCN?? utilized residual
connections to deepen the network, significantly improving performance by enabling the training
of much deeper networks without suffering from vanishing gradient problems. By introducing at-
tention mechanisms, RCAN?® and SAN?* effectively exploited the self-similarity within an image.
In addition, many effective architectures have also been introduced into the field of image super-
resolution. SRGAN? employed an adversarial loss to alternately train the GAN(Generative adver-
sarial network), subsequently producing visually pleasing SR images. IPG?® applied a GCNN(Graph

Convolutional Neural Network) to dynamically aggregate similar regions, thereby enhancing the



interaction between different regions. However, these methods suffer from numerous parameters
and high computational burden, which makes them less suitable for practical applications.

To reduce resource consumption, many methods concentrate on striking a balance between
efficiency and performance. ESPCN!! proposed the sub-pixel convolutional layer applied to real-
time image super-resolution as an alternative to the deconvolution layer. SAFMNet’ introduced
an efficient spatial adaptive feature modulation mechanism for aggregating non-local features.
SMFANet!” utilized lightweight depth-wise separable convolutions to achieve channel and spa-
tial adaptive feature extraction. Beyond focusing on structural design, several model compression
strategies have also been utilized in image super-resolution. DFKD'? adopted a progressive knowl-
edge distillation strategy to enhance the feature extraction capability of lightweight networks.
MTKD'"? selected multiple deep networks with diverse architectures as the teacher branch, en-
abling the lightweight SR model to generate more robust features. These approaches demonstrate
the effectiveness of knowledge distillation in improving the performance of lightweight models.
QuantSR'* introduced a redistribution-driven learnable quantizer to achieve an accurate and ef-
ficient SR model. RefQSR? leveraged the self-similarity within a single image and designed a
reference-based quantization module to save computational costs. However, the aforementioned
methods failed to consider the sparsity within a single image. A significant portion of natural

images consists of smooth regions that only require less processing to achieve good performance.

2.2 Transformer-based Super Resolution Methods

CNN-based SR methods are limited by the kernel size of convolutional operations, resulting in
poorer global perception capabilities. Transformers were originally developed to address sequence

modeling challenges in natural language processing, and have recently been widely adopted in im-



age classification and object detection. IPT?® designed a multi-task Transformer that can simultane-
ously handle multiple upscaling scales, making it flexible for various image super-resolution tasks
with different scaling requirements. SwinIR? utilized local attention and sliding cross-window
interaction to extract global features, thereby significantly reducing redundant computations. By
aggregating features across spatial and channel dimensions, DAT*" effectively enhances SR per-
formance. This method innovatively integrated contextual information from different parts of the
image, leading to more accurate reconstruction and detail enhancement. HAT?' combines both
channel attention and self-attention to achieve further performance improvements. For practi-
cal applications, ESRT?? proposed a lightweight transformer backbone to capture long-distance
context dependence while reducing memory costs. SPIN®* employs intra-superpixel attention to
achieve efficient local information interaction. Transformer-based methods have significantly im-
proved the performance of image super-resolution by leveraging their inherent ability to model
long-range dependencies and capture global contextual information. Despite some approaches
focusing on enhancing the efficiency of Transformer networks, they still bring about substantial

computational resource consumption compared to CNN-based methods.

2.3 Region-aware Super Resolution Methods

In recent years, most research has begun to focus on region-aware image super-resolution. RAISR'
divided image regions into different clusters and then designed multiple dedicated networks for
each cluster, which significantly reduces the computational complexity of the model. SFTGAN?*
leveraged a segmentation probability map to modulate features, enabling the model to adaptively
generate different texture details based on the content of each region. FADN®® utilized Fourier

Transform (FFT) to convert image features into the frequency domain and proposed a masking



strategy to separate high-frequency texture from low-frequency features. These features are then
processed independently through different branch networks. These methods divide images into
irregular regions based on each pixel, which makes them unsuitable for convolution operations, es-
pecially leading to blurring at the edges of the regions. Besides these methods, another approach is
to divide the image into multiple rectangular patches. LAU-Net*® employs reinforcement learning
to implement a dynamic upscaling network that allows different patches to use distinct upscaling
factors. ClassSR'® uses a classifier and designs multiple loss functions to categorize simple patches
into branches with fewer channels, thereby saving computational resources. ARM' trained a su-
pernetwork to dynamically assign each patch to branches with varying numbers of feature chan-
nels. Meanwhile, it further reduces FLOPs by leveraging a look-up table. CAMixer®’ constructs a
dual-branch network incorporating channel attention and self-attention, while balancing efficiency
and performance by controlling the proportion of patches processed by each branch. Region-aware
methods have been proven to effectively improve performance and reduce the FLOPs of the SR
model. In our work, we propose a lightweight regressor that dynamically routes image patches

into different branches of the SR-module to achieve region-aware super-resolution.

3 Proposed Method

In this section, we introduce our proposed ABS in detail. As shown in Fig. 2, our ABS consists
of two parts: Regressor-Module and SR-Module. A large LR image is first divided into multiple
rectangle patches, which are then fed into the regressor. The regressor outputs a two-dimensional
vector based on the content of each patch. The SR-Module contains three branches with the same
architecture but different numbers of channels. By using a manually set threshold, the patches are

routed to the appropriate branch for processing. Finally, the outputs from different branches are
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Fig. 2 The overview of our proposed Adaptive Branch Selection(ABS). Regressor-Module: aiming to generate the
performance increment between multiple branches; SR-Module: aiming to deal with the corresponding patches.

merged to generate the SR image.

3.1 Regressor-Module

The performance increment is defined as the difference in PSNR values across branches, repre-
senting the performance gap between them. The goal of the Regressor-Module is to estimate the
performance increment between different branches. To avoid adding excessive FLOPs, we de-
signed a lightweight Regressor-Module. As shown in Fig. 2, the Regressor-Module is a network
composed of a convolutional layer, an average pooling, and a fully connected layer. For a 64 x 64

input patch, the network has FLOPs of 0.7M, accounting for only 0.07% of FSRCNN. Therefore,



it introduces a very little additional computational cost. The Regressor-Module is formulated as:

(]51,]52) = Reg(mi) (D

where x; denotes the LR image, (p1, p2) denotes a 2-dimensional vector. During testing, we control
the assignment of each patch to different branches by setting thresholds A; and \,. Specifically,
patches where p; is less than \; are routed to the Simple-Branch. If p; is greater than \; but py is
less than Ao, these patches are directed to Medium-Branch. Finally, patches with p; and p, greater
than \; and A\, respectively, are sent to a Hard-Branch. By setting different thresholds, we can

achieve dynamic branch selection, enabling the SR model to operate with varying FLOPs.

3.2 SR-Module

The SR-Module consists of three branches with identical structures but different channel numbers.
As a general acceleration strategy, each branch can be replaced by any other SR network. We
use an existing SR model as the Hard-Branch and construct the other two branches by reducing
the number of channels. As shown in Fig. 2, taking FSRCNN as an example, the Hard-Branch,
Medium-Branch, and Simple-Branch have channel numbers of 56, 36, and 16, respectively. To
better compare and validate the effectiveness of ABS, we maintain the same number of branches
as ClassSR. This consistency allows for a fair evaluation between the two methods. The output of

each branch is represented as follows:

yi = fhp(z:) 2)

where y; and x; denotes output and input of the k-th branch in SR-Module.
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Inspired by knowledge distillation, we introduce a Progressive Mutual Information Knowledge
Distillation (PMID) to encourage branches with fewer channels to learn from those with more
channels. At the same time, if the performance gap between the two branches in the distillation
process is too large, it may lead to a performance drop. Therefore, we implemented PMID between
fp.f2p and f2p,f3, rather than between f&p,f2p and fip,f25. Due to the differences in feature
channel numbers among different branches, directly computing the MAE (Mean Square Error) loss
might be inappropriate and could degrade model performance. To address this issue, we proposed
PMID to better accommodate these structural differences and enhance overall performance.

PMID maximizes the mutual information between branches instead of directly computing the
differences between feature maps. To illustrate PMID, we use the branches f35,f3y as an example.
We utilize an encoder to map the features output by fZ into two representations that have the same

dimension as the features output from 32, denoted as follows:

Hiabi = E(Fz) 3)

where F denotes the encoder, the output of the encoder is represented as y; and b;. F; is the ouput
feature of the branch f2,. The encoder consists of two 1x1 convolutional layers followed by
activation layers. The representation y; contains rich information derived from the branch fZ,,
while b; is used to control the distillation process. Specifically, when the value of b; is larger,
more knowledge is transferred from f3, to f2,, facilitating a stronger learning effect. To avoid
the negative impact on model performance caused by directly aligning feature parameters, we use
an MLP (Multilayer Perceptron) to transform the output features of f2, before aligning them with

the output features of fZ,. We perform the same operations between branches f2, and fi.
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3.3 Loss Functions

The overall loss function of ABS is composed of three key components: the reconstruction loss
L, the performance incrementation loss L,,, and the distillation loss L. Each of these components
plays a distinct role in constructing ABS. The L, is used to ensure the quality of reconstructed
high-resolution images, L, improves the performance of branches with fewer channels and the L,

guarantees the accuracy of the predictions of the regressor. The loss function is defined as:
L= wlLT + ngd + ngp (4)

where wy, wo, and w3 are the weights to balance different loss terms. The above-mentioned loss

function and the setting of weights will be detailed below.

Reconstruction Loss. The reconstruction loss uses the L1 loss and is defined as follows:
N
Ly =) |g: — v 5)
=1

where ¢; denotes SR results from ABS, and y; denotes the ground truth. N is the number of
batches. The L1 loss is widely used in low-level tasks such as image super-resolution, effectively

minimizing the gap between the SR image and the HR image.

Distillation Loss. The three branches in ABS have identical structures and are trained on the
same standard dataset, which makes them more conducive to benefiting from the knowledge dis-
tillation strategy. By employing progressive mutual information knowledge distillation, we avoid

directly minimizing the features themselves, instead focusing on the similarity between feature
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distributions. This approach further enhances the performance of the branch with fewer channel
numbers. The SR model typically consists of multiple stacked blocks with identical structures, we

first compute the loss for the output of each block. It is formulated as:

N o
F! — i
Lj:ZMbM (6)

1=0

where Fij denotes the feature output of the i-th input at the j-th block. Since the deeper layers of
the SR model contain more useful information, we adopt a progressive distillation approach. We
sum these losses from different blocks and apply different weights to them. The Distillation Loss

is defined as follows:

J
Lo=) (3:+L;) (7
where M represents the number of blocks in the SR model.
Performance Incrementation Loss. To effectively train our regressor and accurately capture
the performance differences among different branches, we designed a novel loss function called

Performance Incrementation Loss. This loss aims to minimize the gap between predicted p;, po

and actual performance increments p;, ps. The performance incrementation loss is formulated as:

Ly = |lpr = pull2 + llp2 — 1213 ®)

where the p; and p, represent the performance differences between fi,f, and fs,f3. PSNR is
widely used in the field of super resolution for quantifying the quality of SR images. It provides

a measure of the difference between the pixels of the predicted high-resolution image and the
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ground truth image, with higher PSNR values indicating better quality. To more accurately assess
the performance increments between branches, we use PSNR values as the evaluation metric. The

metric 18 defined as follows:

p1 = P(fa(zi)) — P(fi(z:)) )

p2 = P(f3(zi)) — P(fa(z:)) (10)

where P denotes the computation of PSNR.

3.4 Training strategy

The training strategy of ABS includes two stages. The first stage trains the single SR branch. In
the second stage, we fix the parameters of the SR-Module to train the Regressor. After that, by
setting thresholds, the input patches are adaptively assigned to different branches for processing,
enabling the model to adaptively balance performance and efficiency.

In the first stage, we use L, to train a basic SR model, which serves as the Hard-Branch fg R
Next, we use PMID to train f25, allowing f25 to learn from both the ground truth and branch f3 .
Finally, due to the large gap between fi, and f2, we use f2j as the teacher network to train f2 5.
We utilize both L, and L, to training the branches f2, and fi. The weights w; and w, are set as
1 and 0.1, respectively. This approach progressively transfers knowledge from the f32, branch to
the fi branch, thereby further improving the performance of the f, branch.

In the second stage, we train the regressor to accurately estimate the performance increment
between branches fi, f2; and f2, f2,. Changes in the SR model’s parameters can lead to
variability in the performance increments, which makes it difficult for the regressor to converge.

Therefore, we fix the parameters of the SR-Module to ensure stability in the performance increment

13



during the second stage. This stabilization is essential for the regressor to learn the performance

increments between different branches effectively.

4 Experiments

In this section, we applied the proposed acceleration strategy to FSRCNN,® SAFMNet,” SM-
FANet,' and FreqFormer,*® significantly reducing the FLOPs of these models. Meanwhile, we
compared our ABS with other existing acceleration strategies. To further validate the effectiveness
of our approach, we conducted several ablation studies to analyze the impact of different compo-
nents and key hyperparameters. Additionally, we performed visual comparisons to illustrate the

performance of ABS intuitively.

4.1 Implementation Details

We train the ABS with scaling factors x4. The batch size and HR image size were set to 32
and 256, respectively. During training, an initial learning rate is set as le — 3, with updates to
the learning rate following a cosine annealing scheme. In the first stage, the total number of
iterations for each branch is S00K. In the second stage, we use 200K iterations to train the regressor.
Throughout the training period, we employed horizontal and vertical flipping as data augmentation
to increase the diversity of the training data and improve the model’s performance. The channel
configurations of the three branches are (16, 36, 56) for FSRCNN, (16, 28, 36) for SAFMNet, (16,
28, 36) for SMFANet, and (16, 48, 60) for Freqformer. All PSNR and FLOPs are evaluated on

3080Ti GPUs.
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Table 1 PSNR values on DIV2K and Test2K.

Model Param. DIV2K FLOPs Test2K FLOPs
FSRCNN® 25K 27.82dB 936M(100%) 25.61dB 936M(100%)
FSRCNN-ABS 55K 27.82dB 486M(52%) 25.61dB 515M(55%)
SAFMNet’ 239K 28.95dB 963M(100%) 26.16dB 963M(100%)
SAFMNet-ABS 440K 28.94dB 790M(82%) 26.16dB 799M(83%)
SMFANet'? 197K 29.05dB 737M(100%) 26.21dB 737M(100%)
SMFANet-ABS 368K 29.05dB 612M(83%) 26.21dB 619M(84%)
FreqFormelr38 889K 29.28dB 3.67G(100%) 26.42dB 3.67G(100%)
FreqFormer-ABS 1589K 29.29dB 2.79G(76%) 26.42dB 2.71G(74%)

4.2 Datasets

We train our proposed ABS using the DIV2K?*°(index 001-800) dataset. DIV2K is a high-quality
image dataset that includes 800 training images and 100 validation images, all with a resolution of
2K. During the testing phase, we first divide the images into multiple overlapping patches of size
64 x 64 with stride 62. The size of the images in widely used datasets like Set5,* Set14,*' B100,*
Urban100,* and Mangal(09* are generally too small. Therefore, we finally select the DIV2K
validation set (index 801-900) and additionally choose three hundred images(index 1201-1500)
from the DIV8K®* datasets as our test dataset to validate the effectiveness of ABS. Some of the
images are downsampled to 2K and 4K resolutions to construct the datasets Test2K (index 1201-
1300) and Test4K (index 1301-1400), respectively. The remaining images are left unchanged,

forming the Test8K (index 1401-1500) dataset. Unless otherwise specified, the following PSNR

and FLOPs results are tested on all datasets with a scale factor of x4.
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Table 2 PSNR values on Test4K and Test8K.

Model Param. TestdK FLOPs TestSK FLOPs
FSRCNN® 25K 26.90dB 936M(100%) 32.66dB 936M(100%)
FSRCNN-ABS 55K 26.89dB 496M(53%) 32.72dB 458M(49%)
SAFMNet’ 239K 27.62dB 963M(100%) 33.55dB 963M(100%)
SAFMNet-ABS 440K 27.62dB 722M(75%) 33.53dB 693M(72%)
SMFANet'? 197K 27.70dB 737M(100%) 33.65dB 737M(100%)
SMFANet-ABS 368K 27.70dB 567TM(77%) 33.66dB 538M(73%)
FreqFormer™® 889K 27.91dB 3.67G(100%) 33.88dB 3.67G(100%)

FreqFormer-ABS 1589K 2791dB  2.53G(69%) 33.88dB  2.35G(64%)

4.3 Main Results

4.3.1 Quantitative Results

We applied our proposed ABS to Transformer-based models like FreqFormer and CNN-based
models such as FSRCNN, SAFMNet, and SMFANet. On the Test8K dataset, these models inte-
grated with ABS achieved an average of only 64% of the FLOPs required by the original models.
This demonstrates that ABS can be effectively utilized in different network architectures. ABS
controls each patch entering different branches by setting thresholds. In order to maintain the
same performance as the original models, we set the thresholds A\; and A, for the four SR mod-
els as follows: (0.83, 0.93) for FSRCNN, (0.78, 0.88) for SAFMNet, (0.75, 0.90) for SMFANet,
and (0.72, 0.88) for FreqFormer. As shown in Tablel and Table 2, our ABS maintains SR per-
formance comparable to the original models while reducing FLOPs. Specifically, on the Test8K
dataset, FSRCNN-ABS, SAFMNet-ABS, SMFANet-ABS, and FreqFormer-ABS achieved only
49%, 2%, 73%, 64% of the computational cost compared to FSRCNN, SAFMNet, SMFANEet,
FreqFormer, respectively. Relative to DIV2K, Test2K, and Test4K, ABS achieves greater FLOPs

reduction on the Test8K dataset. This is due to the fact that the images in Test8K have a higher
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resolution and contain more smooth regions, which are directed to branches with fewer channels
by the Regressor-Module. As a result, these smoother areas benefit more from the efficient pro-
cessing provided by ABS, leading to a more significant reduction in FLOPs. Since we employed
three branches with different numbers of channels, the parameters in ABS are approximately twice
those of the original models. However, in practical applications, the cost of increasing memory is

relatively low, so it is acceptable to trade memory for an improvement in efficiency.

4.3.2 Comparison with Other Accelerate Strategy

We also compared our ABS with other methods for accelerating SR. From Table 3, we can see
that ABS achieves the highest reduction in FLOPs while maintaining performance comparable to
the original model. The classifier used in FSRCNN-ClassSR is relatively complex, leading to it
having five times as many parameters as FSRCNN. Although FSRCNN-ARM and FSRCNN-MGA
introduce fewer additional parameters compared to FSRCNN-ABS, their reductions in FLOPs
are 13% and 4% less than our method, respectively. FSRCNN-FSR transforms images into the
frequency domain and divides them into multiple branches based on frequency levels. The complex
image transformation operations, along with the configuration of multiple branches, result in a
significantly larger number of additional parameters compared to our method. This proves that our

method is superior to existing methods for accelerating SR models.

4.3.3 Performance Efficiency Trade-off Results

By adjusting the thresholds, the ABS is capable of adaptively generating SR models with varying
levels of FLOPs to meet different performance and efficiency requirements. We applied ABS to

four different models and obtained multiple SR models with varying FLOPs. As shown in Fig. 3,
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Table 3 Comparison with existing accelerate strategy.

Model Param. Test8K FLOPs
FSRCNN® 25K 32.66dB  936M(100%)
FSRCNN-ClassSR'® 113K 32.73dB  496M(53%)
FSRCNN-ARM" 25K 32.73dB  580M(62%)
FSRCNN-MGA* 43K 32.69dB  498M(53%)
FSRCNN-FSR*’ 154K 32.73dB  568M(61%)

FSRCNN-ABS (Ours) 55K 32.72dB  458M(49%)
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Fig. 3 The performance-efficiency trade-off results tested on the Test8K dataset.

higher FLOPs result in higher PSNR, while lower FLOPs lead to lower PSNR. This demonstrates
that our ABS can dynamically adapt to different FLOPs requirements. Specifically, for limited
computational resources, lower FLOPs can be adopted, whereas for abundant computational re-

sources, higher FLOPs can be utilized to achieve good SR performance.

4.3.4 Ablation Study on MB(Multi branch) and PMID

ClassSR splits the images in the DIV2K dataset into patches and then divides these patches into

three groups based on their PSNR values, ensuring that each group contains an equal number of
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Table 4 Ablation Study on MB and MID.

Model MB PMID Test8K FLOPs
FSRCNN X X 32.66dB  936M(100%)
FSRCNN v X 32.68dB  702M(75%)
FSRCNN-ClassSR v X 32.69dB  618M(66%)
FSRCNN-ABS (Ours) v v 32.72dB  458M(49%)

patches. The three groups are then used to train three separate branches with different numbers
of channels, respectively. Different from ClassSR, we train all three branches using the complete
DIV2K dataset. Since all branches utilize the same input, we employ progressive mutual informa-
tion distillation to enhance the performance of branches with fewer channels. Table 4 shows the
ablation experiments on the MB (Multi-Branch) and MID (Progressive Mutual Information Dis-
tillation). Note that using only the MB without PMID results in less FLOPs reduction compared
to ClassSR, as ClassSR requires branches with fewer channels to process only smooth regions,
whereas in ABS, all patches must be processed. This increased complexity makes it more chal-
lenging for branches with fewer channels in ABS to achieve comparable performance. Without
PMID, our ABS failed to effectively transfer knowledge from branches with more channels to
those with fewer channels. After implementing PMID to enhance interaction between multiple

branches, our ABS achieves a 9% greater reduction in FLOPs compared to ClassSR.

4.3.5 Ablation Study on Patch Size

Since ABS first splits large images into multiple patches, different patch sizes and strides have an
impact on the performance of our RegSR. The ablation study on patch size and stride is shown in
the Table 5. We observe that PSNR decreases with smaller patch sizes due to the limited amount

of information contained within each patch, which restricts the model performance. When the
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Table 5 Ablation on Patch Size and Stride.

Model Patch Stride Test8K FLOPs

FSRCNN-ABS 32 30 32.62dB  936M(54%)
FSRCNN-ABS 40 38 32.67dB 524M(56%)
FSRCNN-ABS 48 46 32.69dB 515M(55%)
FSRCNN-ABS 64 62 32.72dB  458M(49%)
FSRCNN-ABS 72 70 32.72dB  466M(50%)

Table 6 Ablation on the Number of Branches.

Model

Test§K

FLOPs

FSRCNN
FSRCNN-ABS(2)
FSRCNN-ABS(3)
FSRCNN-ABS(4)
FSRCNN-ABS(5)

32.66dB
32.70dB
32.72dB
32.73dB
32.73dB

936M(100%)
442M(4T%)
458M(49%)
475M(51%)
482M(51%)

patch size exceeds 64, the improvement in SR performance becomes negligible, while the FLOPs

increase. Therefore, we chose 64 and 62 as the patch size and stride for ABS, respectively.

Y-

(@) Original Image

(b) ABS Patches

Fig. 4 Visualization of ABS. The number in the patch represents the branch index of each patch.
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SAFMNet SMFANet FregFormer

SAFMNet-ABS SMFANet-ABS FregFormer-ABS
-
FSRCNN SAFMNet SMFANet FreqFormer

FSRCNN-ABS SAFMNet-ABS SMFANet-ABS FreqFormer-ABS

Fig. S Visualization results on Test2K. We selected Img No.1238 and No.1300 from the Test2K dataset to demonstrate
that ABS achieves comparable SR performance with original models.

4.3.6 Ablation Study on the Number of Branches

ABS adopts three branches with different numbers of channels to accelerate the SR model. As
shown in Table 6, we explored the impact of the number of branches. Our channel configurations
are set as follows: for 2 branches, we use (16, 56), for 3 branches, we use (16, 36, 56), for 4
branches, we use (16, 28, 36, 56), and for 5 branches, we use (16, 28, 36, 48, 56). It can be seen that
the number of branches has a minor impact on PSNR and FLOPs. Although increasing the number
of branches slightly improves PSNR, it also leads to a higher number of FLOPs. Therefore, the

number of branches can be chosen based on the specific requirements of the practical application.
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FSRCNN SAFMNet SMFANet FregFormer

FSRCNN-ABS SAFMNet-ABS SMFANEet-ABS FreqFormer-ABS

FSRCNN SAFMNet SMFANet FregFormer

FSRCNN-ABS SAFMNet-ABS SMFANet-ABS FreqFormer-ABS

Fig. 6 Visualization results on Test2K. We selected Img No.1224 and No.1277 from the Test2K dataset to demonstrate
that ABS achieves comparable SR performance with original models.

4.3.7 Visual Results

Fig. 4 illustrates the assignment of different image patches to their respective branches. The orig-
inal image is divided into ABS patches, where the number in the ABS patches indicates the patch
belongs to i-th branch. Specifically, 1, 2, and 3 represent the Simple-Branch, Medium-Branch,
and Hard-Branch, respectively. As can be seen, patches with more textures are routed to the
branch with the highest channels (Hard-Branch), smoother regions are processed by the branch
with fewer channels (Simple-Branch), and patches with intermediate complexity are handled by
Medium-Branch. This demonstrates that our ABS can dynamically and efficiently process im-

age patches based on their texture complexity, thereby reducing computational resources cost and
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achieving comparable SR performance.

Fig. 5 and Fig. 6 show the visualization results of our ABS. We present the visual results of
two groups of images (No. 1238, No. 1300 and No.1224, No.1277) from the Test2K dataset. To
better demonstrate that our ABS achieves visual results comparable to the original model, we have

magnified specific regions of these images for detailed comparison.

5 Conclusion

In this paper, we propose ABS for Accelerating Image Super-Resolution. ABS leverages the
Regressor-Module to predict the performance increment between branches. During testing, dy-
namic branch selection is achieved by setting thresholds, which effectively reduces FLOPs. In the
meantime, we proposed PMID to further enhance the performance of branches with fewer chan-
nels. Extensive experiments demonstrate that our ABS effectively reduces the model’s FLOPs
while maintaining SR performance.
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