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Abstract. In practical applications, image resolution has already reached 4K. However, large images often contain
many smooth regions that can achieve good performance using networks with fewer channels. Existing methods for
accelerating SR models typically divide images into multiple patches and process them through separate branches.
However, these approaches suffer from two limitations:(1) The lack of scalability to be developed on platforms with
different capacities. (2) The lack of interaction between multiple branches results in limited acceleration performance.
Based on this, we propose Adaptive Branch Selection (ABS) for accelerating image super-resolution. ABS utilizes an
efficient regressor to predict the performance increment between branches, dynamically selecting different branches
for each patch by adjusting thresholds. To further enhance the acceleration performance, we introduce Progressive
Mutual Information Knowledge Distillation (PMID) to help improve the SR performance of branches with fewer
channels. Experimental results on the Test8K dataset show that FSRCNN-ABS achieves performance comparable to
the original model while using only 49% of the FLOPs.
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1 Introduction

Single Image Super-Resolution(SISR) is an advanced technique that aims to generate a high-

resolution image from a low-resolution input. The evolution of convolutional neural networks

(CNNs) has spurred the development of numerous effective methods aimed at addressing this in-

herently ill-posed problem.1 Existing methods2, 3 primarily enhance performance by increasing the

number of network blocks,4 refining the attention mechanism,5 introducing the transformer archi-

tecture, and other approaches.5–8 However, these small improvements double the computation cost

of the network, which hinders real-world applications. Particularly within fields like surveillance

and video transmission, image resolutions have already reached ultra-high-definition (UHD), e.g.,

4K (3840×2160). Taking the large image as input and reconstructing the intermediate features in

the UHD space significantly increases both memory consumption and computational costs.
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Fig. 1 PSNR results vs. the total FLOPs of different methods for single image SR(×4) on Test8K dataset.

In recent years, researchers have focused on proposing lightweight networks to enhance effi-

ciency in image super-resolution. Some methods introduced spatially adaptive feature modulation

mechanisms9, 10 and multi-scale feature cascading7 to achieve efficient feature extraction. Other

approaches concentrated on proposing new upsampling layers11 to replace traditional deconvolu-

tion layers. In addition to special structural designs, some model compression strategies, such as

knowledge distillation12, 13 and model quantization,14 have also been applied in the field of image

super-resolution. These methods offer effective strategies to balance performance and resource

consumption, making them suitable for resource-limited devices. However, the aforementioned

methods neglect to consider the sparsity in images. A significant portion of natural images con-

sists of smooth regions that only require less processing to achieve good performance.

Following the introduction of RAISR,15 researchers have started to employ various strategies16

to handle different regions of images. Overall, the mainstream methods are primarily categorized

into pixel-based methods and patch-based methods. The pixel-based method directly divides the
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image into different pixel regions, which often have irregular shapes. However, since convolu-

tional kernels are rectangular, they are not well-suited for convolution operations on such irregular

regions, resulting in limited acceleration performance. The patch-based17 method first divides the

image into rectangular patches of the same size, and then uses different modules to process each

patch separately. ClassSR18 proposed a patch classification strategy to route different patches into

different branches, where each branch had the same structure but with different channel numbers.

Although this approach effectively improves the model’s efficiency, the interaction between dif-

ferent branches is not considered. ARM19 established a supernet that uses an edge-to-PSNR LUT

(look-up table) to divide different patches into various subnets. However, LUT-based methods

require a considerable amount of storage memory to store the look-up table. While the aforemen-

tioned methods reduce the model’s FLOPs through various approaches, they are unscalable and

fail to train one single network to adapt to devices with different resource constraints.

To address the above issues, we propose an Adaptive Branch Selection (ABS) for Accelerate

Image Super-Resolution. From Fig. 1, we can observe that our ABS maintains comparable perfor-

mance to the original model while reducing the model’s FLOPs. Moreover, ABS achieves a greater

reduction in FLOPs when applied to FreqFormer, which is a Transformer-based super-resolution

method. Our ABS contains three branches, which have identical architectures but differ in the

number of channels. Considering the interactions between each branch, we employ PMID (Pro-

gressive Mutual Information Knowledge Distillation) to improve the feature extraction capabilities

of the branches with fewer channel numbers. After that, we train a lightweight regressor to predict

the performance increments between different branches. During testing, the input LR image is

first divided into multiple patches. By setting thresholds, various patches of a single image are

distributed to different branches to save computational resources. Finally, all the patches output
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from the branches will be merged into a single SR image.

1.1 Contributions

The main contributions of our paper are summarized as follows:

• We propose a novel SR accelerate framework that utilizes a lightweight regressor to dis-

tribute multiple patches into different branches for model efficiency.

• We adopt progressive mutual information knowledge distillation to enhance the performance

of the branch with fewer channels in the ABS.

• We conduct quantitative and qualitative evaluations on multiple benchmark datasets, which

demonstrate the superiority of our ABS.

2 Related Works

2.1 CNN-based Super Resolution Methods

With the development of deep learning, SRCNN20 was the first to introduce a convolutional neural

network for solving image super-resolution. Following this, VDSR21 and DRCN22 utilized residual

connections to deepen the network, significantly improving performance by enabling the training

of much deeper networks without suffering from vanishing gradient problems. By introducing at-

tention mechanisms, RCAN23 and SAN24 effectively exploited the self-similarity within an image.

In addition, many effective architectures have also been introduced into the field of image super-

resolution. SRGAN25 employed an adversarial loss to alternately train the GAN(Generative adver-

sarial network), subsequently producing visually pleasing SR images. IPG26 applied a GCNN(Graph

Convolutional Neural Network) to dynamically aggregate similar regions, thereby enhancing the
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interaction between different regions. However, these methods suffer from numerous parameters

and high computational burden, which makes them less suitable for practical applications.

To reduce resource consumption, many methods concentrate on striking a balance between

efficiency and performance. ESPCN11 proposed the sub-pixel convolutional layer applied to real-

time image super-resolution as an alternative to the deconvolution layer. SAFMNet9 introduced

an efficient spatial adaptive feature modulation mechanism for aggregating non-local features.

SMFANet10 utilized lightweight depth-wise separable convolutions to achieve channel and spa-

tial adaptive feature extraction. Beyond focusing on structural design, several model compression

strategies have also been utilized in image super-resolution. DFKD12 adopted a progressive knowl-

edge distillation strategy to enhance the feature extraction capability of lightweight networks.

MTKD13 selected multiple deep networks with diverse architectures as the teacher branch, en-

abling the lightweight SR model to generate more robust features. These approaches demonstrate

the effectiveness of knowledge distillation in improving the performance of lightweight models.

QuantSR14 introduced a redistribution-driven learnable quantizer to achieve an accurate and ef-

ficient SR model. RefQSR27 leveraged the self-similarity within a single image and designed a

reference-based quantization module to save computational costs. However, the aforementioned

methods failed to consider the sparsity within a single image. A significant portion of natural

images consists of smooth regions that only require less processing to achieve good performance.

2.2 Transformer-based Super Resolution Methods

CNN-based SR methods are limited by the kernel size of convolutional operations, resulting in

poorer global perception capabilities. Transformers were originally developed to address sequence

modeling challenges in natural language processing, and have recently been widely adopted in im-
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age classification and object detection. IPT28 designed a multi-task Transformer that can simultane-

ously handle multiple upscaling scales, making it flexible for various image super-resolution tasks

with different scaling requirements. SwinIR29 utilized local attention and sliding cross-window

interaction to extract global features, thereby significantly reducing redundant computations. By

aggregating features across spatial and channel dimensions, DAT30 effectively enhances SR per-

formance. This method innovatively integrated contextual information from different parts of the

image, leading to more accurate reconstruction and detail enhancement. HAT31 combines both

channel attention and self-attention to achieve further performance improvements. For practi-

cal applications, ESRT32 proposed a lightweight transformer backbone to capture long-distance

context dependence while reducing memory costs. SPIN33 employs intra-superpixel attention to

achieve efficient local information interaction. Transformer-based methods have significantly im-

proved the performance of image super-resolution by leveraging their inherent ability to model

long-range dependencies and capture global contextual information. Despite some approaches

focusing on enhancing the efficiency of Transformer networks, they still bring about substantial

computational resource consumption compared to CNN-based methods.

2.3 Region-aware Super Resolution Methods

In recent years, most research has begun to focus on region-aware image super-resolution. RAISR15

divided image regions into different clusters and then designed multiple dedicated networks for

each cluster, which significantly reduces the computational complexity of the model. SFTGAN34

leveraged a segmentation probability map to modulate features, enabling the model to adaptively

generate different texture details based on the content of each region. FADN35 utilized Fourier

Transform (FFT) to convert image features into the frequency domain and proposed a masking
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strategy to separate high-frequency texture from low-frequency features. These features are then

processed independently through different branch networks. These methods divide images into

irregular regions based on each pixel, which makes them unsuitable for convolution operations, es-

pecially leading to blurring at the edges of the regions. Besides these methods, another approach is

to divide the image into multiple rectangular patches. LAU-Net36 employs reinforcement learning

to implement a dynamic upscaling network that allows different patches to use distinct upscaling

factors. ClassSR18 uses a classifier and designs multiple loss functions to categorize simple patches

into branches with fewer channels, thereby saving computational resources. ARM19 trained a su-

pernetwork to dynamically assign each patch to branches with varying numbers of feature chan-

nels. Meanwhile, it further reduces FLOPs by leveraging a look-up table. CAMixer37 constructs a

dual-branch network incorporating channel attention and self-attention, while balancing efficiency

and performance by controlling the proportion of patches processed by each branch. Region-aware

methods have been proven to effectively improve performance and reduce the FLOPs of the SR

model. In our work, we propose a lightweight regressor that dynamically routes image patches

into different branches of the SR-module to achieve region-aware super-resolution.

3 Proposed Method

In this section, we introduce our proposed ABS in detail. As shown in Fig. 2, our ABS consists

of two parts: Regressor-Module and SR-Module. A large LR image is first divided into multiple

rectangle patches, which are then fed into the regressor. The regressor outputs a two-dimensional

vector based on the content of each patch. The SR-Module contains three branches with the same

architecture but different numbers of channels. By using a manually set threshold, the patches are

routed to the appropriate branch for processing. Finally, the outputs from different branches are
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Fig. 2 The overview of our proposed Adaptive Branch Selection(ABS). Regressor-Module: aiming to generate the
performance increment between multiple branches; SR-Module: aiming to deal with the corresponding patches.

merged to generate the SR image.

3.1 Regressor-Module

The performance increment is defined as the difference in PSNR values across branches, repre-

senting the performance gap between them. The goal of the Regressor-Module is to estimate the

performance increment between different branches. To avoid adding excessive FLOPs, we de-

signed a lightweight Regressor-Module. As shown in Fig. 2, the Regressor-Module is a network

composed of a convolutional layer, an average pooling, and a fully connected layer. For a 64×64

input patch, the network has FLOPs of 0.7M, accounting for only 0.07% of FSRCNN. Therefore,
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it introduces a very little additional computational cost. The Regressor-Module is formulated as:

(p̂1, p̂2) = Reg(xi) (1)

where xi denotes the LR image, (p̂1, p̂2) denotes a 2-dimensional vector. During testing, we control

the assignment of each patch to different branches by setting thresholds λ1 and λ2. Specifically,

patches where p1 is less than λ1 are routed to the Simple-Branch. If p1 is greater than λ1 but p2 is

less than λ2, these patches are directed to Medium-Branch. Finally, patches with p1 and p2 greater

than λ1 and λ2 respectively, are sent to a Hard-Branch. By setting different thresholds, we can

achieve dynamic branch selection, enabling the SR model to operate with varying FLOPs.

3.2 SR-Module

The SR-Module consists of three branches with identical structures but different channel numbers.

As a general acceleration strategy, each branch can be replaced by any other SR network. We

use an existing SR model as the Hard-Branch and construct the other two branches by reducing

the number of channels. As shown in Fig. 2, taking FSRCNN as an example, the Hard-Branch,

Medium-Branch, and Simple-Branch have channel numbers of 56, 36, and 16, respectively. To

better compare and validate the effectiveness of ABS, we maintain the same number of branches

as ClassSR. This consistency allows for a fair evaluation between the two methods. The output of

each branch is represented as follows:

yi = fk
SR(xi) (2)

where yi and xi denotes output and input of the k-th branch in SR-Module.
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Inspired by knowledge distillation, we introduce a Progressive Mutual Information Knowledge

Distillation (PMID) to encourage branches with fewer channels to learn from those with more

channels. At the same time, if the performance gap between the two branches in the distillation

process is too large, it may lead to a performance drop. Therefore, we implemented PMID between

f 1
SR,f 2

SR and f 2
SR,f 3

SR rather than between f 1
SR,f 2

SR and f 1
SR,f 3

SR. Due to the differences in feature

channel numbers among different branches, directly computing the MAE (Mean Square Error) loss

might be inappropriate and could degrade model performance. To address this issue, we proposed

PMID to better accommodate these structural differences and enhance overall performance.

PMID maximizes the mutual information between branches instead of directly computing the

differences between feature maps. To illustrate PMID, we use the branches f 2
SR,f 3

SR as an example.

We utilize an encoder to map the features output by f 2
SR into two representations that have the same

dimension as the features output from f 3
SR, denoted as follows:

µi, bi = E(Fi) (3)

where E denotes the encoder, the output of the encoder is represented as µi and bi. Fi is the ouput

feature of the branch f 2
SR. The encoder consists of two 1×1 convolutional layers followed by

activation layers. The representation µi contains rich information derived from the branch f 2
SR,

while bi is used to control the distillation process. Specifically, when the value of bi is larger,

more knowledge is transferred from f 3
SR to f 2

SR, facilitating a stronger learning effect. To avoid

the negative impact on model performance caused by directly aligning feature parameters, we use

an MLP (Multilayer Perceptron) to transform the output features of f 3
SR before aligning them with

the output features of f 2
SR. We perform the same operations between branches f 2

SR and f 1
SR.
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3.3 Loss Functions

The overall loss function of ABS is composed of three key components: the reconstruction loss

Lr, the performance incrementation loss Lp, and the distillation loss Ld. Each of these components

plays a distinct role in constructing ABS. The Lr is used to ensure the quality of reconstructed

high-resolution images, Ld improves the performance of branches with fewer channels and the Lp

guarantees the accuracy of the predictions of the regressor. The loss function is defined as:

L = w1Lr + w2Ld + w3Lp (4)

where w1, w2, and w3 are the weights to balance different loss terms. The above-mentioned loss

function and the setting of weights will be detailed below.

Reconstruction Loss. The reconstruction loss uses the L1 loss and is defined as follows:

Lr =
N∑
i=1

|ŷi − yi| (5)

where ŷi denotes SR results from ABS, and yi denotes the ground truth. N is the number of

batches. The L1 loss is widely used in low-level tasks such as image super-resolution, effectively

minimizing the gap between the SR image and the HR image.

Distillation Loss. The three branches in ABS have identical structures and are trained on the

same standard dataset, which makes them more conducive to benefiting from the knowledge dis-

tillation strategy. By employing progressive mutual information knowledge distillation, we avoid

directly minimizing the features themselves, instead focusing on the similarity between feature
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distributions. This approach further enhances the performance of the branch with fewer channel

numbers. The SR model typically consists of multiple stacked blocks with identical structures, we

first compute the loss for the output of each block. It is formulated as:

Lj =
N∑
i=0

|F j
i − µi|
bi

(6)

where F j
i denotes the feature output of the i-th input at the j-th block. Since the deeper layers of

the SR model contain more useful information, we adopt a progressive distillation approach. We

sum these losses from different blocks and apply different weights to them. The Distillation Loss

is defined as follows:

Ld =
M∑
j=0

(
j

M
∗ Lj) (7)

where M represents the number of blocks in the SR model.

Performance Incrementation Loss. To effectively train our regressor and accurately capture

the performance differences among different branches, we designed a novel loss function called

Performance Incrementation Loss. This loss aims to minimize the gap between predicted p̂1, p̂2

and actual performance increments p1, p2. The performance incrementation loss is formulated as:

Lp = ||p1 − p̂1||22 + ||p2 − p̂2||22 (8)

where the p1 and p2 represent the performance differences between f1,f2 and f2,f3. PSNR is

widely used in the field of super resolution for quantifying the quality of SR images. It provides

a measure of the difference between the pixels of the predicted high-resolution image and the
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ground truth image, with higher PSNR values indicating better quality. To more accurately assess

the performance increments between branches, we use PSNR values as the evaluation metric. The

metric is defined as follows:

p1 = P (f2(xi))− P (f1(xi)) (9)

p2 = P (f3(xi))− P (f2(xi)) (10)

where P denotes the computation of PSNR.

3.4 Training strategy

The training strategy of ABS includes two stages. The first stage trains the single SR branch. In

the second stage, we fix the parameters of the SR-Module to train the Regressor. After that, by

setting thresholds, the input patches are adaptively assigned to different branches for processing,

enabling the model to adaptively balance performance and efficiency.

In the first stage, we use Lr to train a basic SR model, which serves as the Hard-Branch f 3
SR.

Next, we use PMID to train f 2
SR, allowing f 2

SR to learn from both the ground truth and branch f 3
SR.

Finally, due to the large gap between f 1
SR and f 3

SR, we use f 2
SR as the teacher network to train f 1

SR.

We utilize both Lr and Ld to training the branches f 2
SR and f 1

SR. The weights w1 and w2 are set as

1 and 0.1, respectively. This approach progressively transfers knowledge from the f 3
SR branch to

the f 1
SR branch, thereby further improving the performance of the f 1

SR branch.

In the second stage, we train the regressor to accurately estimate the performance increment

between branches f 1
SR, f 2

SR and f 2
SR, f 3

SR. Changes in the SR model’s parameters can lead to

variability in the performance increments, which makes it difficult for the regressor to converge.

Therefore, we fix the parameters of the SR-Module to ensure stability in the performance increment
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during the second stage. This stabilization is essential for the regressor to learn the performance

increments between different branches effectively.

4 Experiments

In this section, we applied the proposed acceleration strategy to FSRCNN,6 SAFMNet,9 SM-

FANet,10 and FreqFormer,38 significantly reducing the FLOPs of these models. Meanwhile, we

compared our ABS with other existing acceleration strategies. To further validate the effectiveness

of our approach, we conducted several ablation studies to analyze the impact of different compo-

nents and key hyperparameters. Additionally, we performed visual comparisons to illustrate the

performance of ABS intuitively.

4.1 Implementation Details

We train the ABS with scaling factors ×4. The batch size and HR image size were set to 32

and 256, respectively. During training, an initial learning rate is set as 1e − 3, with updates to

the learning rate following a cosine annealing scheme. In the first stage, the total number of

iterations for each branch is 500K. In the second stage, we use 200K iterations to train the regressor.

Throughout the training period, we employed horizontal and vertical flipping as data augmentation

to increase the diversity of the training data and improve the model’s performance. The channel

configurations of the three branches are (16, 36, 56) for FSRCNN, (16, 28, 36) for SAFMNet, (16,

28, 36) for SMFANet, and (16, 48, 60) for Freqformer. All PSNR and FLOPs are evaluated on

3080Ti GPUs.
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Table 1 PSNR values on DIV2K and Test2K.

Model Param. DIV2K FLOPs Test2K FLOPs

FSRCNN6 25K 27.82dB 936M(100%) 25.61dB 936M(100%)
FSRCNN-ABS 55K 27.82dB 486M(52%) 25.61dB 515M(55%)

SAFMNet9 239K 28.95dB 963M(100%) 26.16dB 963M(100%)
SAFMNet-ABS 440K 28.94dB 790M(82%) 26.16dB 799M(83%)

SMFANet10 197K 29.05dB 737M(100%) 26.21dB 737M(100%)
SMFANet-ABS 368K 29.05dB 612M(83%) 26.21dB 619M(84%)

FreqFormer38 889K 29.28dB 3.67G(100%) 26.42dB 3.67G(100%)
FreqFormer-ABS 1589K 29.29dB 2.79G(76%) 26.42dB 2.71G(74%)

4.2 Datasets

We train our proposed ABS using the DIV2K39(index 001-800) dataset. DIV2K is a high-quality

image dataset that includes 800 training images and 100 validation images, all with a resolution of

2K. During the testing phase, we first divide the images into multiple overlapping patches of size

64×64 with stride 62. The size of the images in widely used datasets like Set5,40 Set14,41 B100,42

Urban100,43 and Manga10944 are generally too small. Therefore, we finally select the DIV2K

validation set (index 801-900) and additionally choose three hundred images(index 1201-1500)

from the DIV8K45 datasets as our test dataset to validate the effectiveness of ABS. Some of the

images are downsampled to 2K and 4K resolutions to construct the datasets Test2K (index 1201-

1300) and Test4K (index 1301-1400), respectively. The remaining images are left unchanged,

forming the Test8K (index 1401-1500) dataset. Unless otherwise specified, the following PSNR

and FLOPs results are tested on all datasets with a scale factor of ×4.
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Table 2 PSNR values on Test4K and Test8K.

Model Param. Test4K FLOPs Test8K FLOPs

FSRCNN6 25K 26.90dB 936M(100%) 32.66dB 936M(100%)
FSRCNN-ABS 55K 26.89dB 496M(53%) 32.72dB 458M(49%)

SAFMNet9 239K 27.62dB 963M(100%) 33.55dB 963M(100%)
SAFMNet-ABS 440K 27.62dB 722M(75%) 33.53dB 693M(72%)

SMFANet10 197K 27.70dB 737M(100%) 33.65dB 737M(100%)
SMFANet-ABS 368K 27.70dB 567M(77%) 33.66dB 538M(73%)

FreqFormer38 889K 27.91dB 3.67G(100%) 33.88dB 3.67G(100%)
FreqFormer-ABS 1589K 27.91dB 2.53G(69%) 33.88dB 2.35G(64%)

4.3 Main Results

4.3.1 Quantitative Results

We applied our proposed ABS to Transformer-based models like FreqFormer and CNN-based

models such as FSRCNN, SAFMNet, and SMFANet. On the Test8K dataset, these models inte-

grated with ABS achieved an average of only 64% of the FLOPs required by the original models.

This demonstrates that ABS can be effectively utilized in different network architectures. ABS

controls each patch entering different branches by setting thresholds. In order to maintain the

same performance as the original models, we set the thresholds λ1 and λ2 for the four SR mod-

els as follows: (0.83, 0.93) for FSRCNN, (0.78, 0.88) for SAFMNet, (0.75, 0.90) for SMFANet,

and (0.72, 0.88) for FreqFormer. As shown in Table1 and Table 2, our ABS maintains SR per-

formance comparable to the original models while reducing FLOPs. Specifically, on the Test8K

dataset, FSRCNN-ABS, SAFMNet-ABS, SMFANet-ABS, and FreqFormer-ABS achieved only

49%, 72%, 73%, 64% of the computational cost compared to FSRCNN, SAFMNet, SMFANet,

FreqFormer, respectively. Relative to DIV2K, Test2K, and Test4K, ABS achieves greater FLOPs

reduction on the Test8K dataset. This is due to the fact that the images in Test8K have a higher
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resolution and contain more smooth regions, which are directed to branches with fewer channels

by the Regressor-Module. As a result, these smoother areas benefit more from the efficient pro-

cessing provided by ABS, leading to a more significant reduction in FLOPs. Since we employed

three branches with different numbers of channels, the parameters in ABS are approximately twice

those of the original models. However, in practical applications, the cost of increasing memory is

relatively low, so it is acceptable to trade memory for an improvement in efficiency.

4.3.2 Comparison with Other Accelerate Strategy

We also compared our ABS with other methods for accelerating SR. From Table 3, we can see

that ABS achieves the highest reduction in FLOPs while maintaining performance comparable to

the original model. The classifier used in FSRCNN-ClassSR is relatively complex, leading to it

having five times as many parameters as FSRCNN. Although FSRCNN-ARM and FSRCNN-MGA

introduce fewer additional parameters compared to FSRCNN-ABS, their reductions in FLOPs

are 13% and 4% less than our method, respectively. FSRCNN-FSR transforms images into the

frequency domain and divides them into multiple branches based on frequency levels. The complex

image transformation operations, along with the configuration of multiple branches, result in a

significantly larger number of additional parameters compared to our method. This proves that our

method is superior to existing methods for accelerating SR models.

4.3.3 Performance Efficiency Trade-off Results

By adjusting the thresholds, the ABS is capable of adaptively generating SR models with varying

levels of FLOPs to meet different performance and efficiency requirements. We applied ABS to

four different models and obtained multiple SR models with varying FLOPs. As shown in Fig. 3,
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Table 3 Comparison with existing accelerate strategy.

Model Param. Test8K FLOPs

FSRCNN6 25K 32.66dB 936M(100%)
FSRCNN-ClassSR18 113K 32.73dB 496M(53%)
FSRCNN-ARM19 25K 32.73dB 580M(62%)
FSRCNN-MGA46 43K 32.69dB 498M(53%)
FSRCNN-FSR47 154K 32.73dB 568M(61%)
FSRCNN-ABS (Ours) 55K 32.72dB 458M(49%)

Fig. 3 The performance-efficiency trade-off results tested on the Test8K dataset.

higher FLOPs result in higher PSNR, while lower FLOPs lead to lower PSNR. This demonstrates

that our ABS can dynamically adapt to different FLOPs requirements. Specifically, for limited

computational resources, lower FLOPs can be adopted, whereas for abundant computational re-

sources, higher FLOPs can be utilized to achieve good SR performance.

4.3.4 Ablation Study on MB(Multi branch) and PMID

ClassSR splits the images in the DIV2K dataset into patches and then divides these patches into

three groups based on their PSNR values, ensuring that each group contains an equal number of
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Table 4 Ablation Study on MB and MID.

Model MB PMID Test8K FLOPs

FSRCNN ✗ ✗ 32.66dB 936M(100%)
FSRCNN ✓ ✗ 32.68dB 702M(75%)
FSRCNN-ClassSR ✓ ✗ 32.69dB 618M(66%)
FSRCNN-ABS (Ours) ✓ ✓ 32.72dB 458M(49%)

patches. The three groups are then used to train three separate branches with different numbers

of channels, respectively. Different from ClassSR, we train all three branches using the complete

DIV2K dataset. Since all branches utilize the same input, we employ progressive mutual informa-

tion distillation to enhance the performance of branches with fewer channels. Table 4 shows the

ablation experiments on the MB (Multi-Branch) and MID (Progressive Mutual Information Dis-

tillation). Note that using only the MB without PMID results in less FLOPs reduction compared

to ClassSR, as ClassSR requires branches with fewer channels to process only smooth regions,

whereas in ABS, all patches must be processed. This increased complexity makes it more chal-

lenging for branches with fewer channels in ABS to achieve comparable performance. Without

PMID, our ABS failed to effectively transfer knowledge from branches with more channels to

those with fewer channels. After implementing PMID to enhance interaction between multiple

branches, our ABS achieves a 9% greater reduction in FLOPs compared to ClassSR.

4.3.5 Ablation Study on Patch Size

Since ABS first splits large images into multiple patches, different patch sizes and strides have an

impact on the performance of our RegSR. The ablation study on patch size and stride is shown in

the Table 5. We observe that PSNR decreases with smaller patch sizes due to the limited amount

of information contained within each patch, which restricts the model performance. When the
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Table 5 Ablation on Patch Size and Stride.

Model Patch Stride Test8K FLOPs

FSRCNN-ABS 32 30 32.62dB 936M(54%)
FSRCNN-ABS 40 38 32.67dB 524M(56%)
FSRCNN-ABS 48 46 32.69dB 515M(55%)
FSRCNN-ABS 64 62 32.72dB 458M(49%)
FSRCNN-ABS 72 70 32.72dB 466M(50%)

Table 6 Ablation on the Number of Branches.

Model Test8K FLOPs

FSRCNN 32.66dB 936M(100%)
FSRCNN-ABS(2) 32.70dB 442M(47%)
FSRCNN-ABS(3) 32.72dB 458M(49%)
FSRCNN-ABS(4) 32.73dB 475M(51%)
FSRCNN-ABS(5) 32.73dB 482M(51%)

patch size exceeds 64, the improvement in SR performance becomes negligible, while the FLOPs

increase. Therefore, we chose 64 and 62 as the patch size and stride for ABS, respectively.
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(a) Original Image (b) ABS Patches

Fig. 4 Visualization of ABS. The number in the patch represents the branch index of each patch.
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FSRCNN

FSRCNN-ABS

SAFMNet SMFANet FreqFormer

SAFMNet-ABS SMFANet-ABS FreqFormer-ABS

FSRCNN SAFMNet SMFANet FreqFormer

FSRCNN-ABS SAFMNet-ABS SMFANet-ABS FreqFormer-ABS

Fig. 5 Visualization results on Test2K. We selected Img No.1238 and No.1300 from the Test2K dataset to demonstrate
that ABS achieves comparable SR performance with original models.

4.3.6 Ablation Study on the Number of Branches

ABS adopts three branches with different numbers of channels to accelerate the SR model. As

shown in Table 6, we explored the impact of the number of branches. Our channel configurations

are set as follows: for 2 branches, we use (16, 56), for 3 branches, we use (16, 36, 56), for 4

branches, we use (16, 28, 36, 56), and for 5 branches, we use (16, 28, 36, 48, 56). It can be seen that

the number of branches has a minor impact on PSNR and FLOPs. Although increasing the number

of branches slightly improves PSNR, it also leads to a higher number of FLOPs. Therefore, the

number of branches can be chosen based on the specific requirements of the practical application.
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FSRCNN

FSRCNN-ABS

SAFMNet SMFANet FreqFormer

SAFMNet-ABS SMFANet-ABS FreqFormer-ABS

FSRCNN

FSRCNN-ABS

SAFMNet SMFANet FreqFormer

SAFMNet-ABS SMFANet-ABS FreqFormer-ABS

Fig. 6 Visualization results on Test2K. We selected Img No.1224 and No.1277 from the Test2K dataset to demonstrate
that ABS achieves comparable SR performance with original models.

4.3.7 Visual Results

Fig. 4 illustrates the assignment of different image patches to their respective branches. The orig-

inal image is divided into ABS patches, where the number in the ABS patches indicates the patch

belongs to i-th branch. Specifically, 1, 2, and 3 represent the Simple-Branch, Medium-Branch,

and Hard-Branch, respectively. As can be seen, patches with more textures are routed to the

branch with the highest channels (Hard-Branch), smoother regions are processed by the branch

with fewer channels (Simple-Branch), and patches with intermediate complexity are handled by

Medium-Branch. This demonstrates that our ABS can dynamically and efficiently process im-

age patches based on their texture complexity, thereby reducing computational resources cost and
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achieving comparable SR performance.

Fig. 5 and Fig. 6 show the visualization results of our ABS. We present the visual results of

two groups of images (No. 1238, No. 1300 and No.1224, No.1277) from the Test2K dataset. To

better demonstrate that our ABS achieves visual results comparable to the original model, we have

magnified specific regions of these images for detailed comparison.

5 Conclusion

In this paper, we propose ABS for Accelerating Image Super-Resolution. ABS leverages the

Regressor-Module to predict the performance increment between branches. During testing, dy-

namic branch selection is achieved by setting thresholds, which effectively reduces FLOPs. In the

meantime, we proposed PMID to further enhance the performance of branches with fewer chan-

nels. Extensive experiments demonstrate that our ABS effectively reduces the model’s FLOPs

while maintaining SR performance.
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