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Abstract— Pan-sharpening aims to super-resolve the low-
resolution (LR) multispectral (MS) image under the guidance
of a high-resolution (HR) panchromatic (PAN) image. Exist-
ing deep learning (DL)-based pan-sharpening methods usually
adhere to a common philosophy of learning complementary
information between MS and PAN images. Despite remarkable
advances, few studies consider the band-private characteristics
which differ greatly from band to band. An ideal MS image,
however, is jointly determined by its diverse spectral bands,
thus the accurate restoration of every band will benefit the pan-
sharpening performance. In this work, we propose a novel yet
effective solution to reconstruct the HRMS image by explicitly
modulating every spectral band under the conditions of the
PAN image. As a result, we design a spatially-adaptive spectral
modulation network, dubbed SSMNet, which consists of three
core designs: source-aware spectral modulator (SSM), cross-
band information aggregation (CBIA) module, and cross-stage
feature integration (CSFI) module. The first predicts a series
of spatially-adaptive kernels to capture the local information of
every spectral band. Followed by, the second is responsible for
facilitating the information communication among various bands
to guarantee continuous spectral representations. Furthermore,
the third attends to integrate the cross-stage output features to
produce the pan-sharpened result. In addition, we also introduce
the histogram loss to constrain the band-wise distribution of
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the final fused products. Extensive experiments demonstrate
that our SSMNet achieves favorable performance against other
state-of-the-art (SOTA) methods on multiple satellite datasets.
The code is available at https://github.com/ez4lionky/SSMNet/.

Index Terms— Band-private characteristics, deep learning
(DL), histogram loss, pan-sharpening, spectral modulation.

I. INTRODUCTION

HIGH spatial resolution multispectral (HRMS) images are
widely used in various fields [3], [4], such as land-cover

classification [5], environmental protection [6] and change
detection [7], [8], and so forth. However, existing multispectral
(multispectral) sensors cannot directly obtain HRMS images
due to their physical and technical limitations. Therefore,
the common alternative is to equip remote sensing satellites
with two types of imaging sensors, which can capture two
modalities of images of the same scene, i.e., texture-rich
panchromatic (PAN) images and high-spectral resolution MS
images. To be specific, MS images usually hold desired
spectral information but limited spatial resolution; while PAN
images embrace rich spatial details but poor spectral resolu-
tion. Therefore, the pan-sharpening technique is developed to
produce texture-rich MS images by integrating the comple-
mentary information of these two modalities of images. In
other words, an ideally sharpened MS image should be spa-
tially consistent with the PAN image while avoiding spectral
distortions. In light of this, PAN image can be regarded as a
high-resolution (HR) guidance to super-resolve low-resolution
(LR) MS images in pan-sharpening learning.

Treated as a PAN-guided MS super-resolution task, pan-
sharpening is an ill-posed and challenging problem [9], [10].
The up-to-date solutions to a pan-sharpening problem can be
roughly divided into two large categories: traditional methods
and DL-based methods [3], [4], [11]. Traditional approaches
are usually based on specific assumptions, for example, most
of them regard the PAN image as a linear combination of
all spectral bands of HRMS image [3], [12], [13]. In other
words, the model performance is highly dependent on the
exact assumptions. However, prior traditional methods, such
as component substitution (CS)-based methods [14], [15] and
multiresolution analysis (MRA)-based methods [16], [17], fail
to establish the accurate relationship between HRMS and
PAN images, thus suffering from significant spectral or spatial
distortions. Unlike CS and MRA-based methods, variational
optimization (VO)-based techniques [18], [19], taking the
relationships among LRMS, PAN, and HRMS images into
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account, have elegant mathematical expression, and achieve
a better tradeoff between spectral-spatial preservation. Never-
theless, the high computational burden hinders their practical
applications. More recently, DL-based pan-sharpening meth-
ods that are mainly based on convolutional neural networks
(CNNs) have shown great superiority to their conventional
counterparts due to the accessibility of large-scale remote
sensing images. Masi et al. [20] is the first to employ CNN
to implement pan-sharpening learning. Though the network
architecture is very simple, it still achieves favorable results
against traditional methods. Yang et al. [21] developed the first
deep pan-sharpening network based on the residual learning
[22]. Since then, more complicated and deeper CNN architec-
tures [23], [24], [25], [26] have been exploited to enhance the
pan-sharpening performance. Despite the dramatic progress
made by DL-based methods, most of them follow a common
fusion paradigm that mainly focuses on the entire image, sim-
ply ignoring the band-private local characteristics. Compared
with commonly used RGB images, nonetheless, the main
reason MS images embrace more abundant and diversified
information is attributed to their multiple spectral bands which
reflect various contents of the global surface [27], [28], [29],
[30]. In addition, the cross-band information is complementary
and indivisible for remote sensing image interpretation. For
example, some bands, e.g., R, G, and B, usually contain similar
color and texture features, rendering it difficult to discriminate.
Therefore, we can employ other bands with significant spectral
heterogeneity, like the NIR band, to understand the imagery
scenes. In other words, an informative MS image is jointly
determined by its various spectral bands. Fig. 1 presents the
pixel statistics of every sharpened band from different DL
techniques and the corresponding reference band. From Fig. 1,
it is clearly observed that there are obvious differences in
the distribution patterns of different bands, demonstrating the
significant band-private characteristics in MS image. In view
of this, it is necessary to accurately estimate every spectral
band, thus obtaining an ideal MS image with abundant spatial
textures and spectral information.

A. Our Motivation
In the field of pan-sharpening, some attempts have been

made to explore the potentials of band-specific character-
istics [10], [31], and have achieved promising performance
gains. The common strategy of these methods is to simply
concatenate the PAN images (or PAN features) with every
band (or band features) of MS images to enhance the band-
wise information. Despite they have validated the effectiveness
of exploiting the band-private characteristics of MS images
to benefit the fusion performance, there are some limitations:
1) it is hard to effectively take care of the local features of
every band which are precisely the main differences among
them since different bands share the similar global struc-
ture [13] and 2) they still focus on the image-wise fusion effect
while ignoring the differences between every fused spectral
band and the corresponding reference band.

To remedy the above issues, in this work, we devise a novel
yet effective spatially-adaptive spectral modulation network
tailored for pan-sharpening, termed SSMNet. The SSMNet

Fig. 1. Our motivation. The illustration of band-wise distribution statistics
on a reduced-resolution sample from the GaoFen-2 dataset, where two
state-of-the-art (SOTA) deep learning (DL)-based methods, i.e., FusionNet [1]
and Fourmer [2], are selected for comparison. “R,” “G,” “B,” and “N”
represent the red, green, blue, and near-infrared (NIR) bands in the MS
image, respectively. The horizontal axis represents the pixel values of each
band, while the vertical axis denotes the number of pixels with the corre-
sponding value. We also show the Earth mover’s distance (EMD) between
the corresponding histogram and reference distribution. The smaller EMD
value indicates the higher similarity between the fused band and corresponding
reference one (please zoomed-in view to see more details of each distribution
pattern).

can accurately restore the local characteristics specific to
every spectral band of the HRMS image, contributing to the
desirable fusion product. Specifically, we first customize a
source-aware spectral modulator (SSM) for every band, which
predicts a series of spatially-adaptive kernels, conditioning on
the PAN guidance, to capture the local information of every
band. Then, a cross-band information aggregation (CBIA)
module consists of two successive functional operations, i.e.,
channel mixer and spatial mixer, which are used to facilitate
the information communication among various bands, thus
enabling the continuous spectral representation. Furthermore,
an invertible neural network (INN)-based cross-stage feature
integration (CSFI) module is utilized to integrate and refine
the output features of every fundamental building block to
fuse the final product. In addition, we introduce the histogram
loss to constrain the distribution differences between every
spectral band of the fused MS images and the corresponding
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Fig. 2. Visualized absolute error maps corresponding to our motivation.
Compared with other SOTA methods, our proposed SSMNet can achieve
smaller errors in each band reconstruction (second to fourth row, each column
corresponds to one band), thereby achieving lower overall errors (refer to the
first row).

reference images. As illustrated in Fig. 1, comparing with
another two representative approaches, each band generated
by our SSMNet shares a similar pixel distribution pattern
with that of reference band and has a smaller EMD value,
indicating its excellent band-wise restoration. In addition,
we also present the image-wise and band-wise absolute error
maps in Fig. 2, from which our method presents the lower
and sparser residual maps both in overall or single band than
other approaches, indicating high congruence with the ground-
truth (GT). From the above observations, our pan-sharpening
framework, SSMNet, equipped with the above core designs is
capable of accurately estimating every spectral band of MS
image, thus obtaining the desirable fusion product.

Overall, our contributions can be summarized as follows.
1) We explore a new solution for pan-sharpening from the

perspective of spectral-band modulation. Such design
makes the framework consider both image-wise fusion
effect and band-wise distribution differences.

2) We propose a novel SSM tailored for effectively learning
the band-private characteristics. We also developed a
CBIA module to facilitate communication among vari-
ous band features, thus guaranteeing continuous spectral
representation. Besides, an INN-based CSFI module is
devised to obtain more informative features for fusing
the final product.

3) To the best of our knowledge, this work is the
first attempt to introduce the histogram loss into the
DL-based pan-sharpening techniques.

4) Extensive experiments over multiple remote sensing
datasets show that our SSMNet outperforms other
SOTAs, and is well generalized to real-world full-
resolution scenes.

The remaining article is organized as follows. In Section II,
the related works and motivations are presented. In
Section III-B, the proposed pan-sharpening framework will
be detailed introduced. Experimental results and related dis-
cussions are presented exclusively by Section IV. Finally, the
conclusion is drawn in Section V.

II. RELATED WORKS

A. Traditional Pan-Sharpening Methods

CS-, MRA-, and VO-based techniques constitute three main
large families of the traditional pan-sharpening methods [3],
[4], [11]. The CS methods commonly project MS into a
new domain, and further substitute its spatial components
with PAN. Representative CS approaches include the principal
component analysis (PCA) [14], partial replacement adaptive
CS (PRACS) [32], hue-intensity-saturation (HIS) [33], and
Gram–Schmidt (GS) decomposition [34]. Many efforts have
also been devoted to improving the above algorithms. For
example, Ghahremani and Ghassemian [35] propose a linear
IHS (NIHS) that combines the local and global synthesis
strategies to estimate the intensity component, thereby sig-
nificantly reducing the spectral distortion of IHS. Despite the
higher computational efficiency, the CS methods are prone to
produce artifacts. In contrast, the MRA approaches present
desirable spectral preservation yet suffer from significant spa-
tial distortion. The main principle of this category of the
method is to inject the multiscale spatial details of PAN into
MS. Smoothing filter-based intensity modulation (SFIM) [16],
generalized Laplacian pyramid (GLP) [36], GLP with modula-
tion transfer function matched filter (MTF-GLP) [37], additive
wavelet luminance proportional (AWLP) [38], and extracted
wavelet transform (DWT) [39] are commonly used MRA
methods. Unlike the above two techniques, VO algorithms
treat the pan-sharpening task as an ill-posed problem and
struggle to minimize the loss function [18], [40], [41]. Meth-
ods of this category achieve better tradeoffs between spectral
and spatial preservation, while the heavy computational burden
hinders their real applications.

B. DL-Based Pan-Sharpening Methods

In recent years, DL techniques have gained popularity in
both low-level and high-level vision tasks [22], [42], [43],
[44], [45], [46], [47], and made tremendous breakthroughs
in comparison to conventional methods. In the field of
pan-sharpening, DL-based approaches have shown great supe-
riority to traditional algorithms. PNN [20] is the first attempt,
which consists of three convolutional layers, to use CNN for
pan-sharpening learning. Though it’s a very simple architec-
ture, PNN still achieves favorable performance against conven-
tional counterparts. Subsequently, Yang et al. [21] designed
a deep pan-sharpening network based on the residual learn-
ing [22]. Since then, a variety of DL-based pan-sharpening
models have emerged. Yuan et al. [23] designed an effec-
tive multiscale CNN architecture, Deng et al. [1] introduced
the traditional fusion schemes into the network design,
Jin et al. [48] first employ the adaptive convolution to pan-
sharpening task, SFIIN [9] is the pioneering work to deal
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with the pan-sharpening problem in both spatial and frequency
domains, Zhou et al. [2] devised an efficient yet effective
global modeling paradigm from the perspective of the Fourier
domain. In addition, some unsupervised techniques [49], [50]
which are mainly based on the spectral and spatial constraints
have been developed to explore the potential solutions for
pan-sharpening. Despite the revolutionary advances, existing
DL-based methods can only learn the common features across
various spectral bands while simply ignoring the band-specific
local characteristics, since they usually focus on the fusion
effect upon the entire image. Nevertheless, the abundant infor-
mation of remote sensing data is dependent on its multiple
spectral bands. In other words, an ideal HRMS image should
contain both band-shared global structure and band-specific
local characteristics.

C. Band Feature Enhancement
Recently, given that the different spectral bands of MS

images contain different levels of spatial details, some efforts
have been made to explore the intrinsic characteristics spe-
cific to each band. Lu et al. [13] developed a unified
pan-sharpening model which emphasizes the spectral con-
sistency between every fused band and the corresponding
input one, while also studying the relationship between
PAN images and every band of MS images in the gradient
domain. Yang et al. [31] proposed a novel high-pass mod-
ification block to enhance the spatial information of each
band in MS images. Zhou et al. [10] designed the so-called
MS band-aware feature modulation module to investigate the
modality-aware and band-aware characteristics. Despite these
works demonstrating that considering the band-private infor-
mation is beneficial to the model performance, they simply
focus on the image-level or feature-level spatial enhancement
of each band. Therefore, it is hard to effectively learn the
band-private characteristics which are mainly distributed in
the local regions. In addition, they rarely take into account the
band-wise distribution differences between the fused images
and the reference images.

III. PROPOSED METHOD

A. Problem Formulation
Pan-sharpening is the technique of super-resolving the low-

spatial resolution MS image under the guidance of an HR
PAN image. For a better explanation, let us first define some
notations used throughout this article. We denote the PAN
image and up-sampled MS image as P ∈ RH×W and M ∈

RH×W×c, respectively, where H and W are the height and
width of image, while c represents the number of MS bands.
We formulate the ith band of the up-sampled MS image as
Bi ∈ RH×W , i = 1, 2, . . . , c. Besides, the model output and
the corresponding GT are, respectively, remarked as SR ∈

RH×W×c and GT ∈ RH×W×c. The spatial resolution ratio
between PAN and MS (denoted as L ∈ Rh×w×c) is equal
to 4, i.e., H = 4 × h, W = 4 × w.

B. Overall Framework
The commonly used strategy of existing pan-sharpening

methods is to directly concatenate the MS (or MS features)

and PAN (or PAN features) images to learn the cross-modality
complementary information, thus producing the desired MS
images. Despite the remarkable advances gained by this fusion
paradigm, it usually focuses on the whole fusion effect while
simply ignoring the band-private local characteristics, which
hinders the further improvement of pan-sharpening perfor-
mance and suffers from the limited generalization capability.
Unlike prior methods, we attempt to accurately estimate the
local characteristics of every spectral band thus reconstructing
a desired HRMS image, since it is jointly determined by
its various bands. To implement this target, in this article,
we develop an SSMNet for pan-sharpening, which includes
three core designs: SSM, CBIA module, and CSFI mod-
ule. The first performs the multiscale feature extraction of
every spectral band; the second is devised to facilitate the
information communication among various bands to guarantee
continuous spectral representations; the third integrates the
cross-stage output feature to obtain the informative features
for producing the final fusion image. In addition, we also
redevelop the histogram loss for pan-sharpening learning,
which narrows the distribution differences between every fused
band and the corresponding reference one. Fig. 3 clearly
presents the proposed pan-sharpening framework.

1) Structure Flow: As illustrated in Fig. 3, the input MS
image L is first up-sampled to the PAN scale. Then, we split
the up-sampled MS image M into c single bands along the
spectral dimension. Next, we apply the simple convolution
block to every spectral band Bi and the corresponding PAN
image P to obtain their shallow feature representations. The
obtained feature maps are jointly fed into the backbone
network which is assembled by several fundamental building
blocks, and then the cross-stage features are gradually refined
to generate an ideal MS image SR.

2) Supervision Flow: Orthogonal to model design,
we develop effective loss functions to facilitate the network
optimization in the training process, thus producing visually
pleasing and numerically favorable pan-sharpening outcomes.
As illustrated in Fig. 3, our loss functions consist of two com-
ponents: image loss (the pixel loss, i.e., L1 loss) and histogram
loss. Prior works usually focus on the fusion effect of the entire
image, simply ignoring the band-wise differences. In fact,
however, the band-wise distribution of the fused images should
be consistent with the real images (i.e., GT ). To this end,
we introduce the histogram loss to minimize the distribution
differences between each spectral band of the fused SR image
and the corresponding GT image. The well-designed loss
functions enable our model to generate more desirable MS
images since it is capable of considering both the entire fusion
effect and band-specific local characteristics.

In the following, we will elaborate on the detailed structure
of our model’s core designs, including SSM, CBIA, and CSFI,
and the newly-developed loss functions.

C. Core Building Designs
1) Source-Aware Spectral Modulator: From Fig. 3, each

fundamental building block contains two core building
designs. Fig. 4(a) shows the detailed structure of the first
functional module, i.e., SSM, which includes multiple kernel
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Fig. 3. Pipeline of the proposed pan-sharpening framework whose backbone consists of several fundamental building blocks. Each block includes two core
designs: SSM and CBIA module. The output features of the backbone are progressively fused through the CSFI module. 99K: Data forward propagation; →:
Data flow toward CBIA module.

Fig. 4. Detailed structure of our proposed (a) SSM which includes multiple KGs, and (b) CBIA module which consists of two sequential operations, i.e.,
channel mixer and spatial mixer. →: Scaled PAN features; →: Scaled band features.

generators (KGs) to predict a series of spatially-adaptive
convolution kernels, enabling it effectively capture the mul-
tiscale features of every spectral band. Note that, each SSM

is independent yet they share the same structure. Since
pan-sharpening is the process of spatially super-resolving
LRMS image under the guidance of PAN image, cross-
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modality information integration is beneficial for obtaining
the informative representation. As shown in Fig. 4(a), we first
apply a cross-attention module consisting of several convolu-
tion layers coupled with sigmoid activation function to obtain
the spatial attention maps (AP , AM ) of the input feature pair
(FP , FM

j
i ) as

AP ,AM
j
i = CrossAttn

(
cat

(
FP ,FM

j
i

))
(1)

where cat(·) denotes the concatenation operation. i ∈

{1, 2, . . . , c} and j ∈ {1, 2, . . . , n}, where c and n are the
number of the spectral bands of MS image and fundamental
building blocks, respectively. FM

j
i represents the feature

maps of the ith band in the jth block. FP is the feature
maps of the PAN image, which is shared across all bands
and blocks. CrossAttn(·) is the mapping function of cross
attention. Following feature information scaling by attention
maps, we further adopt a group of KGs to predict the private
adaptive kernels for every spectral band as:

Ki = Norm
(

KG1
(
AP ⊙ FP ,AM

j
i ⊙ FM

j
i

))
K2 = Norm

(
KG2

(
AP ⊙ FP ,AM

j
i ⊙ FM

j
i

))
K3 = Norm

(
KG3

(
AP ⊙ FP ,AM

j
i ⊙ FM

j
i

))
(2)

where ⊙ denotes the dot product. Norm(·) is the kernel
normalization that is performed to scale the kernel elements
for facilitating network optimization. K1 ∈ RH×W×1×1, K2 ∈

RH×W×3×3, and K3 ∈ RH×W×5×5 are the current-stage
predicted k × k multiscale kernels specific to every spectral.
Notably, the designed KGs produce pixel-wise weights depen-
dent on the input features, thus enabling a spatially-adaptive
manner to capture the multiscale feature information corre-
sponding to every spectral band. All KGs share a similar
structure

FSpa = SA (FP )

FSpe = CA
(
FM

j
i

)
KG (·) = FSpa ⊙ FSpe (3)

where SA(·) and CA(·) represent the spatial-wise and spectral-
wise attention, respectively, both of them consist of several
convolution layers. FSpa and FSpe are the corresponding
outputs. Note that, without loss of generality, we have omitted
the subscripts of KG(·).

By performing the predicted spatially-adaptive convolution
kernels on the feature maps of every spectral band FM

j
i ,

we can effectively learn its multiscale feature information as

F ′

M
j
i = cat

((
K1 ⊛ FM

j
i

)
,
(
K2 ⊛ FM

j
i

)
,
(
K3 ⊛ FM

j
i

))
(4)

where ⊛ denotes the convolution operation. F ′

M
j
i is the output

of the ith SSM in the jth block.
2) Cross-Band Information Aggregation: After obtaining

the informative band-specific features from every SSM,
we further devise a CBIA module to enhance their channel
and spatial interactions adequately, thereby enabling the con-
tinuous spectral representation. As shown in Fig. 4(b), the

proposed CBIA module includes two successive operations:
channel mixer and spatial mixer.

a) Channel mixer: To reduce the intergroup feature
redundancy while fully exploiting the complementary infor-
mation across various bands, we first perform the group
shuffle [28] to divide the output features of every SSM module
into m groups in the channel dimension as[

g1
1, g2

1, . . . , gm
1

]
= GS

(
F ′

M
j
1

)
[
g1

2, g2
2, . . . , gm

2

]
= GS

(
F ′

M
j
2

)
· · ·[
g1

c , g2
c , . . . , gm

c

]
= GS

(
F ′

M
j
c

)
(5)

where GS(·) is the group shuffle operation. gl
i ∈

RH×W×Cg , i ∈ {1, 2, . . . , c}, l ∈ {1, 2, . . . , m} denotes the lth
group of feature maps corresponding to the ith band, Cg is the
channels of gl

i . Next, we recombine these features to form new
groups, which can achieve cross-band feature interaction, thus
enhancing the diversity of spectral representation. In concrete
terms, we can formulate this process as follows:

F ′′

M
1
i = Re

(
g1

1, g1
2, . . . , g1

c

)
F ′′

M
2
i = Re

(
g2

1, g2
2, . . . , g2

c

)
· · ·

F ′′

M
c
i = Re

(
gm

1 , gm
2 , . . . , gm

c
)

(6)

where Re(·) denotes recombining the grouped cross-band
features. Then, we integrate these shuffled features through
convolution layers as

FCM = Conv
(

cat
(

Conv
(
F ′′

M
1
i ,F

′′

M
2
i , . . . ,F

′′

M
c
i

))
(7)

where Conv(·) denotes the convolution layer, FCM is the
obtained informative features from the channel mixer.

b) Spatial mixer: Following the above process, we fur-
ther perform the spatial unfolding operation which is expressed
as follows:

[P1, P2, . . . , PN ] = SU(FCM) (8)

where SU(·) represents the spatial unfolding operation and has
parameters stride and padding to control the overlap between
the divided patches. Pk ∈ Rp×p×C (k ∈ {1, 2, . . . , N })
represents the kth feature patch with size of p, while N is
the number of patches. Next, we employ a convolution layer
to obtain the spatially-shuffled features as

FSM = Conv(Reshape(P1, P2, . . . , PN )) (9)

where Reshpae(·) transforms the patch dimension into the
channel dimension such that the following convolution will
operate on each divided patch and obtain residual information
for global fusion. FSM denotes the output feature of the spatial
mixer.

By adding the FCM and FSM, we can obtain the final output
feature of the jth fundamental buliding block as

O j = Add(FCM,FSM) (10)

where Add(·) is the element-wise addition.
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Fig. 5. Detailed flowchart of our proposed INN-based CSFI module.

3) Cross-Stage Feature Integration: Considering the loss-
less information of INN [51], [52], we apply an INN-based
CSFI module to obtain more informative features for produc-
ing the desirable MS images. As illustrated in Fig. 5, inside the
CSFI module, the affine coupling layers are implemented using
depth-wise separable convolution blocks given the tradeoff
between feature integration and computational consumption.
Suppose that O1 and O2 are the output features corresponding
to the first and second fundamental building blocks. In each
INN layer, the detailed feature transformation is as follows:

I I
inn = DW (Conv (O1)) + Conv (O2)

I I I
inn = Conv (O1) ⊙ DW

(
I I

inn

)
+ DW

(
I I

inn

)
I I I I

inn = cat
(

Conv
(
I I

inn

)
, I I I

inn

)
(11)

where DW(·) denotes the depth-wise separable convolution
block. Based on the above definition, we can formulate the
whole process of CSFI as follows:

O1
fuse = INN (O1,O2)

O2
fuse = INN

(
O1

fuse,O3

)
· · ·

OL
fuse = INN

(
On−1

fuse ,On

)
(12)

where INN(·) denotes the function in (11). In the last, we per-
form a tail convolution layer on the refined features OL

fuse to
obtain the final fused image SR.

By far, all the constituent modules of SSMNet have been
elucidated comprehensively. To facilitate an enhanced compre-
hension, we also provide a formal representation of our model
that is delineated as Algorithm 1.

D. Training Optimization

As seen in Fig. 3, we adopt two loss terms, including the
reconstruction loss Lr and the histogram loss Lh , as follows:

Ltotal = Lr + αLh (13)

where α denotes the hyperparameter that is used to balance
the spatial reconstruction details and overall distribution for
each spectral channel. Specifically, we choose a widely used
L1 loss to serve as the reconstruction loss Lr to measure the
image-wise differences between the fused SR images and GT

Lr = ∥SR− GT ∥1 . (14)

The histogram loss Lh is derived from the EMD [53]. For
simplicity, we calculate the Manhattan distance of the cumu-
lative histograms between every fused spectral band and the

Algorithm 1 SSMNet
Input: The number of blocks n, PAN image P ,

up-sampled MS image M that contains c
spectral bands Bi

1 FM0
i

= Proj (Bi ), FP = Proj (P)

2 for j = 1, 2, 3, . . . , n do
3 for i = 1, 2, 3, . . . , c do
4 FM j

i
= SSM(FM j−1

i
,FP )

5 end
6 O j = C B I A({FM j

i
, j = 1, 2, 3, . . . , c})

7 O j
f use = C SF I (O j ,O j−1)

8 end
9 SR = Conv(On

f use)

10 return SR

corresponding reference band to obtain the EMD [54], which
is defined as follows:

Lh =
1
c

∗

c−1∑
i=0

∥∥∥HSRi −HGTi

∥∥∥
1

(15)

where HSRi and HGTi are the estimated 1-D cumulative
histogram vector of the ith fused band and the corresponding
reference one, respectively.

Since the process of computing a histogram is nondif-
ferentiable, we introduce the differentiable histogram with
hard-binning trick [55] to enable end-to-end training. For
convenience, we reuse the subscripts i and j again for repre-
sentation. Suppose that µ j and B j represent the center value
and bandwidth of the jth bin. By enumerating each pixel p in
the image I , we approximate the hard-binned 1-D cumulative
histogram vector using the following equations:

hi, j =

∑
p∈I

9
(

1.01B j −|p−µ j |, 1, 0
)

Hi, j = cdf j (hi ) (16)

where

9(x, 1, 0) =

{
x, if x > 1
0, otherwise

is a threshold function, and hi, j denotes the jth count value
of the 1-D histogram vector corresponding to the ith band.
By applying the cumulative density function (cdf) to the vector
hi , we can obtain each element Hi, j of the final outcome.
Given that B j (0 < B j < 1) is usually a tiny value, thus
∀p ∈ (µ j −B j , µ j +B j ), the output value of 9(·) will be close
to 1, while 0 for others. Based on the above analysis, we can
easily implement the differentiable histogram loss through
CNN layers with the fixed parameters µ and B. In practice,
to stabilize the training process, we will normalize the hi, j
with the number of pixels H × W .

IV. EXPERIMENTAL RESULTS

In this section, we conduct a series of experiments on
multiple satellite datasets to demonstrate the effectiveness
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and generalization capability of our pan-sharpening frame-
work. Specifically, we compare our model with several SOTA
pan-sharpening approaches in both simulated and real-world
scenes. Furthermore, we thoroughly discuss the proposed
network architecture through ablation experiments.

A. Baseline Models

PNN [20], DiCNN [56], FusionNet [1], GPPNN [57],
LAGNet [48], INNFormer [58], and Fourmer [2] are seven
representative DL techniques that we select to demonstrate
the superiority of our model. In addition, we also compare
the proposed framework with four traditional algorithms:
BT-H [59], BDSD-PC [60], MTF-GLP-HPM-P [17], and
LRTCFPan [19].

B. Experiment Settings

1) Datasets: In this section, we validate the effectiveness of
our SSMNet over multiple remote sensing datasets, including
WorldView-3 (WV3), GaoFen-2 (GF2), and WorldView-2
(WV2). Specifically, both the WV3 and WV2 datasets contain
eight-band (coastal, blue, green, yellow, red, red edge, NIR 1,
and NIR 2) MS images and single-channel PAN images, while
the GF2 dataset includes four-band (red, green, blue, and NIR)
MS images and the corresponding PAN images, respectively.
Notably, each MS and PAN image pairs are collected from the
same scene. Due to the absence of GT images, we simulate
the training set by leveraging Wald’s protocol [61]. As a
result, each training set contains thousands of PAN/LRMS/GT
(i.e., the original MS images) images pairs with the sizes of
64 × 64 × 1, 64 × 64 × 8, and 64 × 64 × 8, respectively.
In addition, all training and testing data used in this work can
be available on the public website.1

2) Metrics: We follow the research standards of the
pan-sharpening community, and select the spectral angle map-
per (SAM) [62], the relative dimensionless global error in
synthesis (ERGAS) [63], the spatial correlation coefficient
(SCC) [64], and the Q2n (Q8 for eight-band datasets while Q4
for four-band datasets) [65] as the reduced-resolution image
quality assessment (IQA) metrics. For the full-resolution eval-
uation, we adopt three no-reference indicators, including the
hybrid quality with no reference (HQNR) index [66], the
spectral distortion Dλ index and the spatial distortion Ds
index [67]. Specifically, the detailed mathematical definition
of these metrics is presented as follows.

a) Spectral angle mapper: The SAM metric whose ideal
value is 0 is widely used to measure spectral distortions of
fused images compared with GT. The mathematical expression
of SAM is defined as

SAM =
1
C

C∑
i=1

arccos
(

xi · x̂i

∥xi∥2∥x̂i∥2

)
(17)

where C represents the number of spectral bands, xi and x̂i
are the i th spectral vector of GT and pan-sharpened image.
∥ · ∥2 means the L2 norm.

1https://liangjiandeng.github.io/PanCollection.html

b) Relative dimensionless global error in synthesis: The
ERGAS, a global index, is commonly used to assess the overall
distortions of fused images. The optimal value for ERGAS is
equal to 0, mathematically, it can be expressed as

ERGAS(x, x̂) = 100 × r

√√√√ 1
C

C∑
i=1

RMSE(xi , x̂i )

µxi

(18)

where r is the spatial resolution ratio between PAN and
MS images, while x and x̂ denote GT and fused image,
respectively. RMSE(xi , x̂i ) represents the root mean square
error between the i th band of GT and fused image. µxi is the
mean value of the i th band of GT.

c) Spatial correlation coefficient: The SCC index with
an ideal value of 1 characterizes the similarity between the
spatial details of GT and fused images. The specific calculation
of SCC includes two steps: 1) using a high-pass filter to
extract the high frequencies of images and 2) calculating the
correlation coefficient (CC) between the high frequencies to
obtain the SCC. The commonly used Laplacian filter has the
following form:

F =

−1 −1 −1
−1 8 −1
−1 −1 −1

 . (19)

The CC is another widely used spectral indicator which is
defined as follows:

CC =

∑w
i=1

∑h
j=1

(
xi, j − µx

) (
x̂i, j − µx̂

)√∑w
i=1

∑h
j=1

(
xi, j − µx

)2 (
x̂i, j − µx̂

)2
(20)

where w and h are the width and height of the image, while x
and x̂ denote the GT and fused image, respectively. µ∗ denotes
the mean value of the image.

d) Quality index (Q2n): The Q2n is extended from the
universal image quality index (UIQI). Analogously to UIQI,
the Q2n is defined as the product of three terms including CC,
contrast distortion, and mean bias, the specific expression is
as follows:

Q2n
=

|σx x̂ |

σx · σx̂
·

2σx · σx̂

σ 2
x + σ 2

x̂

·
2|x̄ | · | ¯̂x |

|x̄ |2 · | ¯̂x |2
(21)

where x = x(i, j) and x̂ = x̂(i, j) are two hypercomplex
numbers that characterize the GT and fused image at pixel
(i,j). σx x̂ is the covariance between x and x̂ . σ 2

∗ and ∗̄ denote
the variance and mean. The ideally fused image has a Q2n

of 1. Specifically, for the eight-band data (e.g., WorldView-3),
the Q2n is Q8, while Q4 corresponds to the four-band data
(e.g., GaoFen-2 dataset).

e) Spectral distortion index (Dλ): Dλ is a representative
spectral metric denoting the difference of interband Q values,
which is calculated from the fused MS bands and LR MS
bands. Specifically, it is defined as follows:

Dλ =

q
√√√√ 1

C(C − 1)

C∑
i=1

C∑
j=1( j ̸=i)

|di, j (x̂, y)|q (22)

where x̂ and y denote the fused MS image and LR MS image,
respectively. C is the number of spectral bands in the MS
image, and di, j = Q(x̂i , x̂ j ) − Q(yi , y j ).

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on September 09,2024 at 04:55:09 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: RETHINKING PAN-SHARPENING VIA SPECTRAL-BAND MODULATION 5400716

TABLE I
QUANTITATIVE COMPARISON BETWEEN OUR MODEL AND OTHER SOTA METHODS OVER THE REDUCED-RESOLUTION SAMPLES FROM TWO

BENCHMARK DATASETS (BOLD: BEST; UNDERLINE: SECOND BEST)

f) Spatial distortion index (Qs): Ds measures the spatial
distortion complementary to Dλ. It is defined as

Ds =

q
√√√√ 1

C

C∑
i=1

|Q(x̂i , p) − Q(yi , p̃)|q (23)

where p and p̃ and represent PAN and its degraded LR
version. q is usually set to 1.

g) Hybrid quality with no reference: The HQNR index
measuring the global quality of fused image without GT is the
combination of the above two distortions. It is given as

HQNR =

(
1 − DK

λ

)α

(1 − Ds)
β (24)

where usually α = β = 1.
3) Training Details: We implement our SSMNet in PyTorch

2.0 and Python 3.10 using a Linux operating system with an
NVIDIA RTX4090 GPU. We train our network for 500 epochs
with a batch size of 32. During the training stage, we adopt
Adam optimizer with β1 = 0.9, β1 = 0.999 to update the
network parameters using a dynamic learning rate which is set
to 5 × 10−4 for the initial 250 epochs and becomes 0.1 times
the original for the next 250 epochs.

C. Comparison With SOTA Methods

1) Evaluation on Reduced-Resolution Scene: We first
perform the reduced-resolution assessment to measure the
difference between the predicted HRMS images and GT
images. The quantitative results for all datasets have been
collected in Table I, where the best values are highlighted
in bold. From Table I, it is clearly shown that our model
yields favorable results on all evaluation indexes against
other comparison techniques demonstrating its superiority. The
SAM and SCC indicators are widely applied to characterize
the spectral distortions and spatial similarity of pan-sharpened
images compared to the reference images. It is apparent that

our model is significantly lower than other approaches in
SAM, yet gains higher SCC values over all datasets, demon-
strating its desirable spectral and spatial preservation. The best
quantitative outcomes of all metrics over multiple datasets
favorably prove that our model is capable of recovering precise
spatial details while preserving the ideal spectral information.
This can be justified because, compared with other DL-based
technologies which simply focus on the image-wise fusion
effect, our model reconstructs the texture-rich MS images by
accurately estimating every spectral band thus better balancing
the spectral and spatial qualities. In other words, it is necessary
to take into account the band-private characteristics since an
ideal HRMS image is collectively determined by its every
spectral band.

Our model presents excellent fusion ability. The visual
comparison of our model and other cutting-edge DL-based
techniques on a representative WV3 example have been
depicted in Fig. 6. Note that we have omitted the results
of traditional algorithms due to their inferior performance.
The first two columns present the RGB visualization of all
compared methods, where our SSMNet presents minimal spa-
tial and spectral aberrations in comparison to other competing
approaches. In addition to exhibiting the visual results for each
method, we also calculate the absolute error maps between
the pan-sharpened images and the corresponding reference
image. As shown in the final column, our method presents
lower and sparser residual maps than other approaches, indi-
cating high congruence with the GT image. This is expected
because our model is capable of accurately estimating every
band by learning the band-private characteristics, contribut-
ing to high-fidelity pan-sharpening. In a word, our method
embraces superior fusion capability in comparison to other
pan-sharpening methods as evidenced by the quantitative and
qualitative comparisons.

We further demonstrate our model’s superiority by compar-
ing the visual results on a typical GF2 sample. As illustrated
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Fig. 6. Qualitative comparison between our model and other SOTA techniques on a typical satellite image from the WorldView-3 dataset. Images in the last
row visualize the absolute error maps (mean value of all bands) between the pan-sharpened results and the GT (please zoomed-in view to see more details).

in Fig. 7, our technique preserves more spatial details yet
enables desirable spectral fidelity, thereby presenting minimal
aberration. By contrast, other comparison approaches demon-
strate obvious spatial distortions or inferior spectral quality.
For example, the sharpened outcomes of GPPNN and Fourmer
exhibit distorted structures, while the results of LAGNet
and INNFormer present desired spatial textures but suffer
from spectral aberration. Based on the above quantitative and
qualitative comparisons, our method renders the numerically
favorable and visually pleasing fusion outcomes compared
with other approaches, since it kindly takes care of the band-
private characteristics.

2) Evaluation on Full-Resolution Scene: We further imple-
ment experiments on some full-resolution examples to evaluate
the performance of our model in real-world scenes and
its generalizability. Specifically, we directly apply the pre-
trained model obtained from the reduced-resolution data
to some full-resolution samples. Note that we adopt three
widely used no-reference evaluation metrics to assess the
full-resolution performance due to the unavailability of GT
images. The quantitative outcomes for all compared meth-
ods over WV3 and GF2 datasets have been compiled in
Table II. As presented in Table II, the DL-based techniques
still perform favorably against their traditional counterparts.

In addition, our proposed framework achieves almost the
optimal outcomes for all indexes, confirming its superior
generalization capability compared to both traditional and
DL-based SOTA pan-sharpening technologies. The visual
comparison of all compared DL-based methods on a repre-
sentative full-resolution test case has been illustrated in Fig. 8.
It is easy to observe from Fig. 8, our proposed pan-sharpening
framework presents better spatial textures yet shows pleasing
spectral preservation. Other competing approaches, by con-
trast, either contain blurry spatial textures and distorted edges
or exhibit significant spectral aberration. In the enlarged area
marked by a red rectangle, for example, the roof top generated
by FusionNet, INNFormer, and Fourmer displays obvious
spatial distortions. From the amplified region in the bottom left
corner, moreover, the inferior spectral fidelity can be clearly
observed in the edges of buildings produced by INNFormer
and Fourmer. Both the quantitative results and qualitative
analysis demonstrate that our model can be well applied to
real-world scenes.

3) Comparison of Band-Wise Restoration: To better present
the pan-sharpened quality per band, we further employ a global
indicator, i.e., ERGAS, to measure the overall distortions
of fused bands from our method and two cutting-edge DL
techniques, e.g., FusionNet and Fourmer. Fig. 9 presents
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Fig. 7. Qualitative comparison between our model and other SOTA techniques on a typical satellite image from the GaoFen-2 dataset. Images in the last
row visualize the absolute error maps (mean value of all bands) between the pan-sharpened results and the GT (please zoomed-in view to see more details).

TABLE II
QUANTITATIVE COMPARISON BETWEEN OUR MODEL AND OTHER SOTA METHODS OVER THE FULL-RESOLUTION SAMPLES FROM TWO BENCHMARK

DATASETS (BOLD: BEST; UNDERLINE: SECOND BEST)

the ERGAS of each fused band on the GaoFen-2 testing
dataset that contains four bands including red, green, blue,
and NIR. It is clearly seen that every fused band from

our method has a smaller ERGAS in comparison to that of
another two approaches, demonstrating its improved band-wise
restoration.
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Fig. 8. Qualitative comparison between our model and other SOTA techniques on a typical satellite image from the GaoFen-2 dataset. Notably, the MSE
maps are unavailable due to the lack of GT MS images in real-world full-resolution scenes (please zoomed-in view to see more details).

TABLE III
QUANTITATIVE COMPARISON BETWEEN OUR MODEL AND OTHER SOTA METHODS OVER THE REDUCED-RESOLUTION AND FULL-RESOLUTION

SAMPLES FROM WORLDVIEW-2 DATASET (BOLD: BEST; UNDERLINE: SECOND BEST)

D. Generalization Capability on Cross-Sensor Data
We further investigate the generalization capability and

adaptability of our proposed framework and other DL-based
techniques on the cross-sensor dataset. Specifically, we use
some samples from the WV2 sensor to test all DL-based
models that are trained on the WV3 dataset without any
fine-tuning. This is justified because both WV3 and WV2
data share the same spectral band but their spatial res-
olution is slightly different. Table III has summarized

the quantitative results of all compared approaches on
the reduced- and full-resolution scenes. It is clear that
our proposed framework gains almost the best results for
all indexes again, indicating its pleasing applicability and
robustness.

E. Ablation Experiments
We further investigate the contribution of different core

ingredients by performing ablation studies on the GF2 dataset.
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Fig. 9. Comparison of band-wise ERGAS between our method and two representative DL techniques over the GaoFen-2 dataset.

TABLE IV
QUANTITATIVE RESULTS OF ABLATION EXPERIMENTS OVER THE REDUCED-RESOLUTION SAMPLES FROM GAOFEN2 DATASET,

WHERE HL DENOTES THE HISTOGRAM LOSS

As illustrated in Table IV, we explore four variants of our
proposed SSMNet (i.e., Config. I).

1) Effect of Histogram Loss Functions: To the best of our
knowledge, we are the first to introduce histogram loss into
DL-based pan-sharpening techniques. To verify its effective-
ness, we make a comparison between Config. I and Config. II
(by removing the histogram loss from Config. I). As compiled
in Table IV, by incorporating the histogram loss into the
network optimization, our framework achieves better results,
proving its effectiveness and applicability.

2) Effect of CSFI Structure: The CSFI is a postfusion
module that is used for effectively refining and integrating the
cross-stage output features to fuse the final product. We take
an INN-based architecture to implement this module. In our
design, we ameliorate the affine coupling layers with the
depth-wise separable convolution blocks for balancing the
feature extraction and computational consumption. To make a
fair comparison and demonstrate the effectiveness, we replace
the CSFI module with a vanilla convolution module with
similar parameters size, and directly take the concatenated
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TABLE V
QUANTITATIVE RESULTS OF ABLATION EXPERIMENTS OVER THE REDUCED-RESOLUTION SAMPLES FROM GAOFEN2 DATASET. X − L1 AND X − L2

DENOTE CALCULATING THE CORRESPONDING LOSS TERM THROUGH L1 AND L2 DISTANCE, RESPECTIVELY

cross-stage output as input (corresponding to the Config. III).
The quantitative results in Table IV have demonstrated the
effectiveness of the CSFI module (Config. II) in compari-
son to the vanilla concatenation and convolution module in
Config. III. The performance difference indicates that using
our CSFI benefits the model performance gains, suggesting its
better ability to integrate and fuse the cross-stage information.

3) Effect of CBIA Structure: Due to its meticulously crafted
channel and spatial mixer, the CBIA module is employed to
facilitate the cross-band information communication and the
exchange of complementary features, thereby guaranteeing a
more comprehensive spectral representation. We further inves-
tigate the effect of CBIA architecture. Specifically, we replace
the channel mixer and spatial mixer in CBIA with sev-
eral depth-wise separable convolution layers (Config. IV).
In Table IV, the CBIA (Config. III) obtains better outcomes
which can be attributed to its more effective feature interaction,
indicating the rationality of our module design.

4) Effect of SSM Structure: Each individual band of the
MS image has its own SSM module, enabling the SSMNet to
extract the band-private feature in the early-stage. The SSM
module mainly utilizes a series of predicted spatially-adaptive
convolution kernels with different kernel sizes, enabling it to
effectively capture the multiscale features of every spectral
band. To validate the efficacy of our design, we substitute these
adaptive convolution kernels with vanilla 2-D convolution
and process all bands (Config. V) at one time. Table IV
gives the corresponding quantitative results. It is evidently that
our proposed multiscale spatially-adaptive kernels yield better
results for all metrics, demonstrating its favorable representa-
tion learning ability.

5) Further Exploration of Histogram Loss: We further
explore other variants and alternatives of histogram loss. To be
specific, we first compare the impact of EMD calculation
methods on performance. Table V clearly shows that our
model achieves improved performance when replacing the
L1 distance with L2, indicating the promising potential of
histogram loss. As many have recognized, high-order statis-
tics are commonly used to enforce the learning of texture
features. However, most high-order statistics are nondifferen-
tiable. In light of this, we use the gradient statistic constraint as
an approximation of high-order statistics to explore its efficacy.
Here, we still employ the L1 and L2 distance, respectively,
to calculate the gradient difference between the sharpened
band and the reference one. Likewise, the gradient statistic
constraint with L2 distance [Config. V(IV)] obtains better

performance compared to L1 [Config. V(III)]. Overall, our
model equipped with histogram loss gains better outcomes,
moreover, promising performance gains are available when
altering the calculation of histogram loss.

F. Limitation and Further Discussion

First, we evaluate the superiority of the proposed frame-
work on pan-sharpening, and we will extend it to other
image fusion tasks, e.g., hyperspectral image super-resolution
(HISR). Second, though we are the first to introduce the
histogram loss in pan-sharpening tasks to the best of our
knowledge, it is still worth exploring its effectiveness in other
models and analogous tasks. Third, we will attempt to rethink
the histogram loss from other aspects, such as gradient-domain
and Fourier space.

V. CONCLUSION

In this work, we develop a novel yet effective frame-
work for pan-sharpening since existing SOTAs simply ignore
the band-private local characteristics that differ greatly from
each other. First, the proposed SSM predicts a series of
spatially-adaptive kernels under the HR guidance of PAN
image to learn the multiscale local information of every spec-
tral band. Then, the CBIA module is performed to facilitate
the CBIA to guarantee the continuous spectral representations.
Furthermore, the INN-based CSFI module is configured to
progressively integrate the cross-stage outputs to obtain more
informative features for generating the desired MS images.
In addition, we first introduce a histogram loss term to min-
imize the distribution differences between the fused spectral
bands and the corresponding reference ones. Benefiting from
the above core designs, our solution is capable of obtaining
numerically favorable while visually pleasing fusion results.
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