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a b s t r a c t 

Recently, block-based design methods have shown effectiveness in image restoration tasks, which are 

usually designed in a handcrafted manner and have computation and memory consumption challenges 

in practice. In this paper, we propose a joint operation and attention block search algorithm for im- 

age restoration, which focuses on searching for optimal combinations of operation blocks and atten- 

tion blocks. Specifically, we first construct two search spaces: operation block search space and atten- 

tion block search space. The former is used to explore the suitable operation of each layer and aims 

to construct a lightweight and effective operation search module (OSM). The latter is applied to dis- 

cover the optimal connection of various attention mechanisms and aims to enhance the feature expres- 

sion. The searched structure is called the attention search module (ASM). Then we combine OSM and 

ASM to construct a joint search module (JSM), which serves as the basic module to build the final net- 

work. Moreover, we propose a cross-scale fusion module (CSFM) to effectively integrate multiple hier- 

archical features from JSMs, which helps to mine feature corrections of intermediate layers. Extensive 

experiments on image super-resolution, gray image denoising, and JPEG image deblocking tasks demon- 

strate that our proposed network can achieve competitive performance. The source code is available on 

https://github.com/it-hao/JSNet . 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Image restoration (IR) aims to recover high-quality (HQ) images 

rom low-quality (LQ) images corrupted by various kinds of degra- 

ations, which is a classical low-level task and has drawn much at- 

ention. However, due to the irreversible nature of the degradation 

rocess, the IR task is an ill-posed problem and very challenging. 

Recently, deep learning-based methods [1–3] adopt a data- 

riven manner to remove the possible corruptions by mapping 

he degraded images to the latent clean versions, which have 

een widely investigated and achieve promising performance in 

mage super-resolution (SR) [4,5] , image denoising (DN) [6] , and 

PEG image deblocking [7] , etc. Among them, the tremendous ad- 

ances are mainly benefited from the developments of various 

andcrafted neural network architectures including residual con- 

ection [8] , dense connection [9] , attention mechanism [10] , and 
∗ Corresponding author. 
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ulti-scale design [5] , etc. However, most above methods focus on 

mproving the quality of the restored images, and largely neglect 

he model complexity and inference speed. For example, MPR- 

et [3] contains 20M parameters and 760G Multi-Adds when the 

nput image 256 × 256 . This severely restricts the practical use of 

he CNN-based image restoration methods in the real world. 

To overcome the drawback, most methods that concentrate on 

rchitecture designs are proposed to reduce model complexity. In 

hese handcrafted designs, some methods [11,12] reduce the num- 

er of network parameters by utilizing them recursively, they fur- 

her improve the reconstruction performance using residual units, 

emory, or feedback modules but at the cost of running time. 

ome methods [4,13] utilize cascaded or multi-branch architec- 

ures or exploit different types of convolutions to decrease com- 

utational burdens and memory cost. Other methods [14,15] com- 

ine various attention mechanisms such as channel attention, spa- 

ial attention, and non-local attention to better guide feature ex- 

raction, thus improving the quality of restored images. Although 

hese methods offer a good compromise in terms of PSNR and 

odel complexity or speed, they also rely on overweight manual 

https://doi.org/10.1016/j.patcog.2022.108909
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108909&domain=pdf
https://github.com/it-hao/JSNet
mailto:z.zhao@hfut.edu.cn
https://doi.org/10.1016/j.patcog.2022.108909
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Fig. 1. Comparisons of various connection patterns of attention mechanisms, where CA and SA denote channel attention and spatial attention, respectively. Composition (i) 

is based on sequential manner, composition (ii) is based on parallel manner, and composition (iii) is our proposed attention search space that contains potential connection 

patterns of various attentions. It is worth noting that composition (i) and (ii) are special cases of composition (iii). 
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esigns and expert experience, which leads to spending consider- 

ble consumption on unnecessarily repetitive designs. For instance, 

ttention-based architectures often employ an attention module to 

 cell or a block. As shown in Fig. 1 (a) and (b), channel attention

nd spatial attention can be organized in a sequential or paral- 

el manner, which results in the representational capability of the 

odel is subject to previous artificial arrangements. However, a 

ommon characteristic is that most of these methods are block- 

ased design mode. This also fully demonstrates the feasibility of 

his design mode. 

Recently, Neural Architecture Search (NAS) algorithm [16,17] has 

een proposed, which refers to automatically find a desirable 

eural architecture by using one of the following search strate- 

ies, namely, evolutionary algorithm (EA), reinforcement learn- 

ng (RL), gradient-based methods, etc. Compared with the manu- 

lly designed architectures, the networks found by NAS algorithms 

chieve better performance and have fewer parameters. However, 

A-based and RL-based search methods [16,17] often face the ex- 

losion problem of architecture combination, which is computa- 

ionally inefficient and time-consuming. In contrast, gradient-based 

ethods [18,19] can effectively reduce the training time and attract 

ide attention. 

Motivated by the search efficiency of the gradient-based 

AS [18] , effectiveness of attention mechanism, and block-based 

esign mode, we propose a joint operation and attention block 

earch algorithm to hunt for efficient lightweight image restoration 

etworks, namely J oint S earch Net work (JSNet ). This may be the 

rst attempt towards an automatic search of desirable attention- 

ased neural architectures in the image restoration field. Specifi- 

ally, the method consists of two search spaces: operation block 

earch space and attention block search space. The operation block 

earch space aims to discover the optimal building block at the 

ppropriate location, thus obtaining the best combination of var- 

ous types of operations with as few parameters as possible. We 

alled the searched structure operation search module. There are 

wo manners to utilize attention mechanisms: one is to embed 

arious independent attention blocks in the operation block search 

pace to form a multi-branch structure, and the other is to build 

n attention block search space that can progressively emphasize 

eaningful features. It is obvious that the former just add more 

ranches to the connection as shown in Fig. 1 (b), and the lat- 

er helps to discover potential forms of connection and inner cor- 

elation of various attention mechanisms. Therefore, constructing 

n attention block search space structure, depicted in Fig. 1 (c), 

hould be a better choice. We call the searched structure attention 

earch module. Finally, taking two modules together, we design a 

oint search module (JSM) to build the final network, as shown in 

ig. 2 (a). 

In addition, we design a cross-scale fusion module (CSFM), 

hich can effectively integrate all features extracted by JSMs. The 

enefits of this module are twofold. First, the module adopts but- 

erfly structure [20] , which can generate various linear combina- 
2 
ions of multi-scale features, thus enhancing the information com- 

unication between different types of features. Second, in the spe- 

ific IR task ( i.e. , image super-resolution), the number of feature 

aps in sub-pixel convolution affects both the computational com- 

lexity and performance of the network. However, the proposed 

SFM has reduced the number of feature maps before the features 

re fed into a high-dimensional space, thus achieving a great trade- 

ff between performance and the number of parameters. The de- 

ailed structure of CSFM is shown in Fig. 4 (b). 

Part of our previous work has been reported in [21] . Compared 

o the preliminary version, in this manuscript, we have made im- 

rovements in the following aspects: (1) The initial version merely 

olves the image super-resolution task. This paper, however, deals 

ith multiple image restoration tasks using the NAS-based algo- 

ithm. Besides, we construct a larger attention search space in the 

earch phase and stack more searched blocks to formulate the final 

etwork for the gray image denoising and JPEG image deblocking 

asks. (2) We perform a more comprehensive survey of existing re- 

ated works, e.g., adding the review of image restoration and neu- 

al architecture search works in Section 2 . (3) We conduct more 

mpirical evaluations and more experimental analysis in Section 4 . 

n addition, more experimental details and more comparison ex- 

eriments are provided. In brief, although there are some literal 

verlaps, the new content in this manuscript makes the proposed 

earch method much more general, comprehensive, and convinc- 

ng. In summary, the main contributions of this paper are listed as 

ollows: 

(1) Based on the differentiable architecture search, we propose a 

joint operation and attention block search algorithm that en- 

ables operation type search and attention mechanism search 

simultaneously. It provides more room for searching for bet- 

ter networks of image restoration. 

(2) We propose the operation block search space and attention 

block search space to find the optimal combination of op- 

eration block and attention block, respectively. Taking these 

two searched modules together, we construct a joint search 

module to formulate the final network. 

(3) We propose the cross-scale fusion module (CSFM) based on 

butterfly structures and multi-scale features, which can be 

embedded in the searched network, thus helping to expand 

representation space for achieving more powerful networks. 

. Related work 

.1. CNN-based image restoration 

To date, many image restoration methods [5,22] have been pro- 

osed, which achieve remarkable performance in various applica- 

ions. For instance, SRCNN [23] firstly apply three convolutional 

ayers to image super-resolution, which achieves superior perfor- 

ance compared with conventional methods. ARCNN [7] uses a 
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Fig. 2. (a) The architecture of joint search module. As an example, (b) and (c) indicate how the features are propagated to the third node in the operation block search 

space and the attention block search space, respectively. Each node with an index outputs a latent representation ( e.g., feature maps). In operation block search space, an 

operation flow from the i -th node to j-th node is formulated by weighting candidate operations (denoted as op k ) with a set of hyper-parameters, namely, 
{
ω 

op k 
(i, j) 

}
. We only 

sample part of input features with a mask M i, j in the channel dimension. In attention block search space, the mixing process of our candidate attentions (denoted as att k ) 

with μatt k 
(i, j) 

is denoted as an attention flow from the i -th node to j-th node. 
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our-layer convolutional network for JPEG image deblocking. To 

tack more convolutional layers and ease the difficulty of training a 

eep network, VDSR [8] and DRCN [11] employ gradient clipping, 

esidual learning, or recursive supervision to tackle image super- 

esolution tasks. FFDNet [6] constructs a flexible network to deal 

ith noise on different levels, as well as spatially variant noise. 

DNet [24] investigates the potentials of complex-valued CNNs for 

mage denoising. YOLY [25] proposes an unsupervised and un- 

rained neural network for image dehazing for the first time. How- 

ver, these methods are for specific image restoration tasks. Unlike 

hese methods, [14,15] design a unified model framework that can 

e generalized to different image restoration tasks. NLRN [14] in- 

orporates non-local operations into a recurrent neural network 

or image restoration. A-CubeNet [15] combine multiple attentions 

o enhance feature representations. AirNet [26] designs a unified 

ramework to recover images from multiple corruptions in an all- 

n-one fashion. Although the overall performance of image restora- 

ion has dramatically boosted, with it come the increases of the 

umber of parameters and the amount of computation. Besides, 

hese hand-crafted networks are labor-intensive to seek an optimal 

rchitecture, while the image restoration performance is sensitive 

o neural architecture according to the advances in recent years. 

.2. Neural architecture search 

Search strategy . NAS aims to automatically discover satisfac- 

ory network architecture [16,17] by using various search strate- 

ies such as evolutionary algorithm (EA), reinforcement learning 

RL), gradient-based methods, etc. Some early works [16,17] mainly 

dopt EA for optimizing neural architecture and parameters, which 

btain the best architecture via the iterative crossovers and mu- 

ations of population. RL-based algorithms, as an alternative, adopt 
3 
olicy gradients [27] and Q-learning techniques to train a recurrent 

eural network that acts as a meta-controller to generate poten- 

ial architectures by exploring a predefined search space. However, 

oth EA-based and RL-based methods are inefficient in search and 

ften require a large number of computations and training time. 

o solve this issue, recent works have been focused on gradient- 

ased methods, such as DARTS [18] and PC-DARTS [19] . The core 

dea of this method is to relax the discrete and non-differentiable 

rchitecture to a continuous and differentiable surrogate, thus al- 

owing the efficient search of the architecture using gradient de- 

cent. Many recent works including ours and [28,29] are inspired 

y this differentiable NAS. 

NAS for image restoration . To date, some works apply the NAS 

trategy to image restoration. E-CAE [30] employs EA to search 

or architecture autoencoders for image impainting and denoising. 

ALSR [17] treats the super-resolution task as a constrained multi- 

bjective optimization problem and utilizes RL and EA to search 

ightweight models. ESRN [16] constructs multiple handcrafted ef- 

cient residual dense blocks and then resorts to EA to search for 

he optimal network architecture in these given building blocks 

or image super-resolution. However, all these methods mentioned 

bove require enormous computational resources and take a large 

mount of GPU time for searching. Two more related works are 

iNAS [28] and CLEARER [29] that employ gradient-based search 

trategy. HiNAS employs operations with adaptive receptive field 

o build a flexible search space then applies differentiable archi- 

ecture search to image denoising and deraining with less search 

ime. CLEARER designs a multi-scale search space that contains dif- 

erent task-flexible modules and then leverages the differentiable 

earch strategy to search for a super-network. 

Motivated by the superior performance and search efficiency, 

e also employ the gradient-based approach as our search strat- 
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Fig. 3. The architecture of the candidate operation block and its components. The 

block contains two basic cells and is constructed based on residual dense block [9] . 

The ‘Conv-3’ and ‘Conv-1’ denote the 3 × 3 convolution and 1 × 1 convolution, 

respectively, ‘Conv-sep’ denotes the separated convolution, and ‘Conv-dil’ denoted 

the dilated convolution. 
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gy but with slight differences. Firstly, both HiNAS and CLEARER 

re differentiable. However, our work is closely related to PC- 

ARTS [19] , which samples a subset of channels into the opera- 

ion selection block while bypassing the rest directly in a shortcut, 

herefore performing a more efficient search. Secondly, we con- 

truct two search spaces to find optimal operation blocks and op- 

imal attention blocks, respectively. HiNAS can search for the op- 

ration of each layer. However, CLEARER only explores when to 

use low-level and high-level features based on three task-flexible 

odules, and thus neglects to search the concrete module design. 

his allows CLEARER to search for larger network within the same 

earch time, but also leads to a sub-optimal solution. 

. Proposed method 

.1. Constructing the joint search module 

Many previous works [9,10] focus on designing efficient build- 

ng blocks to extract features. These blocks typically consist of a se- 

ies of convolution layers and specific attention mechanisms, thus 

eglecting the connections between different types of convolutions 

r various attention mechanisms, resulting in sub-optimal results. 

n this section, we utilize neural architecture search algorithms 

o obtain the optimal operation search module (OSM) and atten- 

ion search module (ASM) from two search spaces. As shown in 

ig. 2 (a), a joint search module (JSM) is proposed based on these 

wo modules and residual learning strategy. We denote I m −1 and I m 

s the input and output of the JSM at the m -th layer. The process

f feature propagation in the module can be formulated as: 

 0 = H OSM 

(I m −1 ) , (1) 

 m 

= H ASM 

(F 0 ) + I m −1 , (2) 

here H OSM 

and H ASM 

denote the function of OSM and ASM re- 

pectively, F 0 denotes the output and input of the m -th OSM and 

he m -th ASM. 

.1.1. Operation block search 

For the image restoration task, we redesign a series of candi- 

ate operation blocks. Inspired by the effectiveness of the residual 

ense block (RDB) [9] , we construct several novel operation blocks 

ased on the following two aspects: (1) the convolution number 

n RDB is set to 2, and the growth rate [9] is set to 16; (2) the

ommon convolution layer is replaced with various cells such as 

ommon-cell, sep-cell, dil-cell, light-cell, and shallow-cell to en- 

ure effective and lightweight network. Therefore, apart from the 

kip connection and none [18] , there are five types of candidate 

peration blocks, as depicted in Fig. 3 . 
4 
Then, we first adopt a 1 × 1 convolution layer to adaptively 

ontrol the dimensions of feature maps. Given the input feature 

 m −1 , we have: 

 0 = W con v (I m −1 ) , (3) 

here W con v is the weight of 1 × 1 convolution layer. Then the S 0 
ill be inputted into the operation block search space. Here, we 

dopt the cell-based [27] manner to construct search space, where 

he cell is defined by a directed acyclic graph with several nodes. 

n this search space, we denote N 1 operation nodes with the index 

rom 0 to N 1 − 1 , each node takes the outputs of all previous nodes

s input and then produces new feature maps. Note that the out- 

ut of the node with index 0 equals S 0 (so-called feature maps). 

aking the j-th node as an example, the output of this node is cal- 

ulated as follows: 

 j = 

j−1 ∑ 

i =0 

O (i, j) (S i ) , 0 < j < N 1 , (4) 

here S j is the output of the j-th node. O (i, j) (ø) represents the 

peration flow that transforms S i from the i -th node to j-th node, 

here i < j. Let O be the set of candidate operations, every op- 

ration o ∈ O from i -th node to j-th node has been allocated an

rchitecture parameter αo 
i, j 

. We compute the architecture weight 

dopting sof tmax function for every operation from i -th node to 

j-th node: 

 

o 
(i, j) = 

exp 

{
αo 

i, j 

}
∑ 

o ′ ∈O exp 

{
αo ′ 

i, j 

} . (5) 

ere, to obtain the output of each node, we adopt the channel 

ampling strategy [19] to sample a subset of channels into the op- 

ration flow: 

 (i, j) (S i ) = [(1 − M (i, j) ) ∗ S i , 

R ∑ 

k =1 

ω 

op k 
(i, j) 

· op k (M (i, j) ∗ S i )] , (6)

here [ · · · ] denotes the channel concatenation operation, 

 

op 1 , op 2 , · · · , op R } denotes R possible operation blocks, and 

 

op k 
(i, j) 

corresponds to the weight of operation op k from i -th node to 

j-th node. M (i, j) denotes the mask which assigns 1 to the selected 

hannels and 0 to the remaining ones. Therefore, M (i, j) ∗ S i and 

1 − M (i, j) ) ∗ S i represent the selected and remaining channels, 

espectively. Finally, the outputs of all nodes are fused by the 

oncatenation operation followed by a 1 × 1 convolution layer as 

ollows: 

 0 = W con v [ S 0 , S 1 , · · · , S N 1 −1 ] , (7) 

here F 0 denotes the output of operation block, W con v is the weight 

f 1 × 1 convolution layer. 

.1.2. Attention block search 

Previous works [10,31] employ different attention mechanisms 

o a basic building block to enhance the representational capabil- 

ty of models. These methods require subtle handcrafted designs. 

n this subsection, we construct an attention block search space, as 

llustrated in Fig. 2 (a). The search space is a directed acyclic graph 

ontaining a sequence of N 2 nodes. Each node is a potential rep- 

esentation of features, and each directed edge is regarded as an 

ttention flow. Similar to how we compute the architecture weight 

f each operation block above, we obtain the probability of each 

ttention block using a sof tmax function overall candidate atten- 

ion blocks: 

o 
(i, j) = 

exp 

{
βo 

i, j 

}
∑ 

o ′ ∈O exp 

{
βo ′ 

i, j 

} . (8) 

aking the flow from the i -th node to the j-th node for exam- 

le, where i < j, the core idea of an attention flow is to formulate
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Fig. 4. (a) The overall architecture of the proposed joint search network (JSNet). The ‘Upsampling’ consists of one 3 × 3 convolution followed by one sub-pixel [36] convolu- 

tion layer and is specific for the image super-resolution task. (b) The proposed cross-scale fusion module (CSFM), the ‘ PA ’ denotes the pixel attention proposed in [34] , the 

‘ CA ’ denotes channel attention proposed in [10] . 

Table 1 

The list of candidate attention blocks to be searched. 

Type Channel-wise Pixel-wise Spatial 

1 Channel Attention (CA) [10] Pixel-wise Attention (PA) [34] Spatial Attention (SA) [32] 

2 Contrast-aware Channel Attention (CCA) [13] Cost-effective Attention (CEA) [35] Enhanced Spatial Attention (ESA) [33] 
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he features propagated from i -th node to j-th node as a weighted 

ummation of T candidate attentions: 

 (i, j) (F i ) = 

T ∑ 

k =1 

μatt k 
(i, j) 

· att k (F i ) , (9) 

here { at t 1 , at t 2 , · · · , at t T } denotes T possible attention types. F i 
enotes the output of the i -th attention node. We mix candidate 

ttentions in a continuous relaxation way by weighting att k (ø) 

ith μ
att k 
(i, j) 

. The output of each node in attention block is the sum- 

ation of all associated attention flows, which can be denoted as: 

 j = 

j−1 ∑ 

i =0 

A (i, j) (F i ) , 0 < j < N 2 . (10) 

ote that the output of the first node equals to F 0 , therefore, the

utput of overall attention block is denoted as F N 2 −1 . Due to the 

se of residual structure strategy in JSM, we compute the output 

y summing F N 2 −1 with I m −1 . 

Consider that lean blocks are essential to design fast and 

ightweight image restoration networks. Therefore, we introduce 

 variety of lean and effective attention mechanisms to build at- 

ention block search space. All these attention mechanisms can 

e divided into three categories, as shown in Table 1 . The first 

ype is based on the channel level, such as channel-wise at- 

ention [10,13] . The second type is spatial attention, including 

A [32] and ESA [33] . The third type is based on pixel-wise, such

s PA [34] and CEA [35] . Besides, skip connection is added to the

ttention search space. These attention mechanisms are all conve- 

ient to be embedded in our attention search block, as shown in 

ig. 2 (a). It is noted that CCA and SA are only used in gray image

enoising and JPEG image deblocking tasks. Therefore, apart from 

kip connection, there are four and six candidate attention opera- 

ions in attention block search space for image SR and other image 

estoration tasks, respectively. 

.2. From search to evaluate 

.2.1. Overall search procedure 

Benefiting from the continuously relaxed representation of the 

earch space, we can search for the super-network by updating the 

rchitecture parameters α, β and weight parameters θ of the net- 

ork using gradient descent algorithms such as ADAM. We train 
5 
he network with the following L 1 loss: 

α, β, θ ) = argmin 

α,β,θ

N ∑ 

i =1 

‖ 

F ( y i ;α, β, θ ) − x i ‖ 1 , (11) 

here y i and x i are the i -th pair of low quality and high qual-

ty image patches respectively, and F ( y i ;α, β, θ ) denotes the re- 

onstructed image patch. To ensure better search results, we split 

he search procedure into two stages. In the first stage, we only 

ptimize the weights (kernels in convolution layers) for enough 

pochs to avoid the performance being too bad, we call it a 

arm-up. In the second stage, we activate the architecture search. 

e alternatively optimize the weights parameters by descending 

 θL train (θ, α, β) on the training set, and optimize the architec- 

ure parameters by descending ∇ α,βL val (θ, α, β) on the validation 

et. After the search stage, for each operation flow O (i, j) (ø) and at- 

ention flow A (i, j) (ø), we select the operation block and attention 

lock with the maximum value which is determined by ω and μ, 

espectively. Thereby, we obtain the exact architecture of the joint 

earch module. 

.2.2. Deriving the final networks 

Based on searched modules above, we build a lightweight joint 

earch network (JSNet) for image restoration tasks, as illustrated 

n Fig. 4 (a). To effectively integrate all features extracted by JSMs, 

e propose a cross-scale fusion module (CSFM) which reduces the 

hannel dimension without losing contextual information of deep 

eatures. As shown in Fig. 4 (b), our CSFM is a multi-branch struc- 

ure with pixel-attention modules [34] in each branch and contains 

everal channel attention modules between two branches. We em- 

loy a 1 × 1 convolution layer at the beginning to reduce feature 

imensions by half. Let x denote the features after the reduction 

peration. We can denote the linear combination of feature propa- 

ation as the following equations: 

 

up 
1 

= PA 

up (x ) + CA 

down 
1 (x ) , 

 

down 
1 = CA 

up 
1 

(PA 

up (x )) + x, 

 

up 
2 

= CA 

down 
2 (PA 

down (x down 
1 )) + x up 

1 
, 

 

down 
2 = CA 

up 
2 

(x up 
1 

) + PA 

down (x down 
1 ) , 

(12) 

here the superscripts and subscripts denote the position and the 

rder that appeared on the module. Notably, we replace the 3 × 3 

onvolution with 5 × 5 convolution in the PA 

up module to extract 

ulti-scale spatial information. Finally, x 
up 
2 

and x down 
2 

are summed 

o obtain the outputs of the module. The elaborate settings of net- 

orks will be introduced in Section 4.1 . 
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Fig. 5. The derived operation search module for (a) image super-resolution, (b) gray image denoising, and (c) JPEG image deblocking. The derived attention search module 

for (d) image super-resolution, (e) gray image denoising, and (f) JPEG image deblocking. 
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. Experiments 

.1. Experimental settings 

.1.1. Datasets 

We apply our JSNet to three classical image restoration tasks: 

mage super-resolution, gray image denoising, and JPEG image de- 

locking. The DIV2K [37] dataset is used to train all of our models. 

he noisy images are generated by adding white Gaussian noise 

o the corresponding clean image with σ = 10, 30, 50, 70. The 

ompressed images are generated by using Matlab JPEG encoder 

ith JPEG quality setting q = 10, 20, 30, 40. As for image super-

esolution, we follow the same setting as CARN [4] . Set5 [38] , 

et14 [39] , BSD100 [40] , and Urban100 [41] are adopted as the test 

atasets. For the gray image denoising, we follow the same set- 

ing as IRCNN [42] . BSD68 [40] and Kodak24 are used as the test 

atasets. For JPEG image deblocking, we follow the same setting 

s ARCNN [7] . LIVE1 [43] and Classic5 [44] are applied as the test 

atasets. We adopt the mean PSNR and/or SSIM to evaluate the re- 

ults. 

.1.2. Search settings 

The search network stacks four JSMs to construct the overall 

etwork and each search space has four nodes. The number of 

hannels in candidate operation blocks and attention blocks is set 

o 16 and 64, respectively. The input size of the LQ image is set to

4 × 64 and the minibatch size is set as 16. During the search 

tage, 800 training images D train from DIV2K are used to opti- 

ize the weights, and 100 validation images D val from DIV2K are 

sed to optimize the architecture parameters. All datasets are aug- 

ented by flipping horizontally or vertically and rotating 90 ◦. We 

ptimize the θ , α, β parameters with two ADAM optimizers. For 

eight parameter θ , the learning rate is set to 10 −4 , the momen- 

um parameter and exponential moving average parameter are set 

s (0.9,0.999) and the weight decay is set to 0. For architecture pa- 

ameters α and β , the learning rate is set to 10 −3 , the momentum 

arameter and exponential moving average parameter are set as 

0.9,0.999) and the weight decay is set to 10 −3 . The learning rates 

f the warm-up process and searching process are both set to 10 −4 . 

he warm-up and overall search processes take about 2 ×10 4 iter- 

tions and 4 ×10 5 iterations, respectively. 

.1.3. Training settings 

The final network architecture for image super-resolution con- 

ists of five JSMs, one upsampling module, and one CSFM. How- 

ver, for other image restoration tasks, we replace the upsampling 
6 
odule with one JSM, which means there are six JSMs across the 

nal network. For retraining the final network, we use dataset 

 train with the same data augmentation as the searching stage. We 

rain the model in 10 6 iterations and randomly select 16 LQ im- 

ges sized by 64 × 64 as the inputs. The ADAM algorithm with β1 

 0.9, β2 = 0.999, ε = 10 −8 is adopted to optimize the network. 

he learning rate is set as 2 × 10 −4 and then decreases to half for 

very 2 × 10 5 iterations. Our network is implemented by PyTorch 

ramework with NVIDIA 2080Ti GPU. 

.2. Searched results 

The derived operation search module and attention search 

odule for various image restoration tasks are shown in Fig. 5 . We 

an observe that: 

(1) The structures of our derived modules for three different 

image restoration tasks are quite different from each other. 

However, many previous works focus on utilizing unified 

frameworks to solve various image restoration tasks, thus re- 

sulting in worse performance. 

(2) We provide enough candidate blocks of different sizes to 

choose from, including five operation blocks and six at- 

tention blocks in the operation block search space and at- 

tention block search space, as mentioned in Fig. 3 and 

Table 1 . Therefore, the searched structures can achieve a bet- 

ter trade-off between performance and model complexity. 

(3) The fact that searched modules select proper operation 

blocks and attention blocks at suitable positions instead of 

simply integrating complex blocks indicates the proposed 

search algorithm is effective. 

.3. Ablation study 

.3.1. Benefits of searching for operation blocks 

In this section, to evaluate the benefits of searching for oper- 

tion blocks, we apply the proposed method to the image super- 

esolution task. In detail, we first obtain the operation search mod- 

le (OSM) by operation block search space. The searched structure 

s shown in Fig. 5 (a). Based on the searched results, we replace 

he searched operation blocks between paired nodes in the OSM 

ith one based on common_cells, light_cells, and shallow_cells, re- 

pectively. We denote these operation blocks as RDB-common_cell, 

DB-light_cell, and RDB-shallow_cell. The detailed structures of 

everal cells are shown in Fig. 3 . Here, we do not add ASM and

SFM in the network in order to evaluate the performance of this 
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Table 2 

Comparisons of the number of parameters and mean values of PSNR evaluated on 

various models. We record the best results for ×4 image SR in 500 epochs. 

Operation block Parameters Set5 Set14 BSD100 Urban100 

RDB-common_cell 631K 31.89 28.42 27.44 25.64 

RDB-light_cell 484K 31.74 28.33 27.38 25.48 

RDB-shallow_cell 520K 31.80 28.37 27.41 25.57 

RDB-searched 588K 31.91 28.44 27.47 25.69 

Table 3 

Comparison of the number of parameters and mean values of PSNR obtained by 

using various attention mechanism. We record the best results for ×4 image SR in 

500 epochs. 

Attention block Parameters Set5 Set14 BSD100 Urban100 

RB 610K 31.60 28.26 27.34 25.37 

RB-CA 615K 31.67 28.27 27.36 25.44 

RB-SA 617K 31.74 28.40 27.40 25.53 

RB-PA 627K 31.89 28.42 27.44 25.64 

RB-CCA 617K 31.69 28.30 27.41 25.47 

RB-CEA 620K 31.72 28.31 27.46 25.57 

RB-ESA 623K 31.78 28.45 27.46 25.60 

RB-ASM 651K 31.95 28.48 27.48 25.80 
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Table 4 

Investigations of JSM and CSFM. We record the best PSNR for ×4 image super- 

resolution in 500 epochs. 

Name 1 2 3 4 

JSM ✗ 
√ 

✗ 
√ 

CSFM ✗ ✗ 
√ √ 

Parameters 610K 629K 411K 430K 

PSNR on Set5 31.60 31.98 31.79 32.04 

PSNR on Set14 28.27 28.52 28.35 28.54 

Table 5 

Investigation of scale setting in cross-scale fusion module. 

Cross-scale fusion module 

Scale all 3 × 3 all 5 × 5 cross-scale 

PSNR on Set5 31.99 31.92 32.04 

PSNR on Set14 28.50 28.47 28.54 

Table 6 

Comparisons of running time (seconds) of various image SR methods on HR images 

of sizes 256 × 256, 512 × 512, and 1024 × 1024 for ×2 scaling factor. 

Size 256 × 256 512 × 512 1024 × 1024 

CARN [4] 0.018 0.032 0.126 

SRFBN-S [45] 0.034 0.054 0.211 

IMDN [13] 0.026 0.039 0.137 

FALSR [17] 0.074 0.090 0.421 

LAPAR-A [46] 0.045 0.062 0.287 

JSNet (Ours) 0.031 0.056 0.244 
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odule separately. The comparison results for ×4 image super- 

esolution on several datasets are lists in Table 2 . 

From Table 2 , it is obviously observed that the results of RDB- 

earched outperform the results using other three types of opera- 

ion blocks. Compared with RDB-common_cell, our RDB-searched 

ould improve the PSNR by 0.02dB, 0.02dB, 0.03dB and 0.05dB on 

et5, Set14, BSD100 and Urban100 with fewer parameters. It in- 

icates that the operation search module has found the optimal 

rchitecture from candidate operation blocks. 

.3.2. Benefits of searching for attention blocks 

We obtain the attention search module (ASM) by attention 

lock search space. To evaluate the effect of searched ASM, we 

se the search network as the basic network and compare the 

erformance in several classical attention mechanisms. As done in 

AN [34] , we also replace the JSM with the same number of resid-

al blocks (RB), residual blocks with channel attention (RB-CA), 

esidual blocks with spatial attention (RB-SA), residual blocks with 

ixel attention (RB-PA), residual blocks with contrast-aware chan- 

el attention (RB-CCA), residual blocks with cost-effective attention 

RB-CEA), residual blocks with enhanced spatial attention (RB-ESA), 

nd residual blocks with our attention module (RB-ASM), respec- 

ively. Note that all mentioned attention layers are embedded in 

he tail of RB. The quantitative comparison results are reported in 

able 3 . From these results, it is obvious that our RB-ASM outper- 

orms the other attention methods and significantly improves the 

SNR value compared with the baseline. This fully demonstrates 

hat we have found optimal attention combinations based on the 

ttention block search space. 

.3.3. Benefits of JSM and CSFM 

To make a fair comparison, we replace JSM in the search net- 

ork with the same number of residual blocks (RB) to construct 

aseline model. In Table 4 , the baseline achieves the lowest PSNR 

alue on Set14 ( ×4). When JSM or CSFM is adopted, the PSNR val-

es are increased by + 0.25 dB and + 0.08 dB compared with the 

aseline on Set14 ( ×4), respectively. Note that the model only with 

SFM has 1/3 fewer parameters than the baseline. Moreover, the 

esults of the last column demonstrate that the combination of our 

roposed JSM and CSFM achieve a comprehensive balance of the 

umber of parameters and performance. 

In Table 5 , we further study the setting of multi-scale in the 

SFM. When the size of convolutional kernel in PA 

up and PA 

down 
7 
s set 3 × 3 and 5 × 5, the PSNR value is inferior to the result

f cross-scale setting. This fully demonstrates the proposed CSFM 

ntegrates the multi-scale spatial information, boosting the repre- 

entational capability of the network. 

.4. Comparisons with the state-of-the-art methods 

We first make a brief complexity analysis of some lightweight 

mage super-resolution methods and then compare the pro- 

osed JSNet with some state-of-the-art methods in image super- 

esolution, gray image denoising, and JPEG image deblocking. 

.4.1. Computational complexity 

To obtain a more comprehensive understanding of the model 

omplexity, we compare our JSNet against various benchmark 

ethods in terms of the Multi-Adds and the number of the pa- 

ameters on the Set5 dataset ×2 dataset. We assume the high- 

esolution image size to be 720p (1280 × 720) to calculate Multi- 

dds. As shown in Fig. 6 , our JSNet outperforms all state-of-the-art 

odels that have less than 1M parameters. Especially, JSNet has 

ewer network parameters and Multi-Adds than IMDN, LAPAR-A, 

ALSR-A, and ESRN-F, but our method outperform all these mod- 

ls. As shown in Table 6 , we also use official codes of the compared

ethods to obtain the average running time on various HR sizes. 

ach result is an average value obtained by repeating five exper- 

ments to ensure a fair comparison. Although our proposed JSNet 

annot achieve the best result in each metric, our method makes a 

etter trade-off between performance and model complexity. 

.4.2. Image super-resolution 

We compare our JSNet with ten representative image super- 

esolution methods: FSRCNN [47] , VDSR [8] , DRRN [48] , Mem- 

et [12] , IDN [49] , CARN [4] , IMDN [13] , LAPAR [46] , FALSR [17] ,

nd ESRN [16] . Note that, the first nine methods are hand- 

rafted architectures and the last two are NAS-based methods. 

able 7 shows quantitative comparisons for scaling factors ×2, ×3, 

nd ×4 on two commonly-used metrics: peak signal-to-noise ra- 

io (PSNR) and structural similarity index measure (SSIM). FALSR 
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Fig. 6. Comparison between our proposed JSNet and other lightweight methods on Set5 for ×2 setting. Circle sizes are set proportional to the number of parameters. 

Table 7 

Comparisons on multiple benchmark datasets for lightweight image super-resolution networks. The Multi-Adds is calculated corresponding to the 1280 × 720 high- 

resolution image. The best results are emphasized with bold . 

Methods Scale Train Data Parameters ↓ Multi-Adds ↓ Set5 Set14 BSD100 Urban100 

PSNR/SSIM ↑ PSNR/SSIM ↑ PSNR/SSIM ↑ PSNR/SSIM ↑ 
Handcrafted methods 

FSRCNN [47] ×2 G100 + Yang91 12K 6G 37.05/0.9560 32.66/0.9090 31.53/0.8920 29.88/0.9020 

VDSR [8] G100 + Yang91 665K 613G 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 

DRRN [48] G100 + Yang91 297K 6,797G 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 

MemNet [12] G100 + Yang91 677K 2,662G 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 

IDN [49] G100 + Yang91 579K 125G 37.85/0.9598 33.58/0.9178 32.11/0.8989 31.95/0.9266 

CARN [4] DIV2K 1,592K 223G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 

SRFBN-S [45] DIV2K + Flickr2K 282K 680G 37.78/0.9597 33.35/0.9156 32.00/0.8970 31.41/0.9207 

IMDN [13] DIV2K 694K 159G 38.00/0.9605 33.63 /0.9177 32.19 /0.8996 32.17 /0.9283 

LAPAR-A [46] DIV2K + Flickr2K 548K 171G 38.01/0.9605 33.62/ 0.9183 32.19/0.8999 32.10/0.9283 

NAS-based methods 

FALSR-A [17] ×2 DIV2K 1,021K 235G 37.82/0.9595 33.55/0.9168 32.12/0.8987 31.93/0.9256 

FALSR-B [17] DIV2K 326K 75G 37.61/0.9585 33.29/0.9143 31.97/0.8967 31.28/0.9191 

FALSR-C [17] DIV2K 408K 94G 37.66/0.9586 33.26/0.9140 31.96/0.8965 31.24/0.9187 

ESRN-F [16] DIV2K 1,019K 129G 37.93/0.9602 33.56/0.9171 32.16/0.8996 31.99/0.9276 

ESRN-V [16] DIV2K 324K 73G 37.85/0.9600 33.42/0.9161 32.10/0.8987 31.79/0.9248 

JSNet (Ours) DIV2K 476K 109G 38.05/0.9608 33.63 /0.9180 32.19 /0.8997 32.17/0.9284 

Handcrafted methods 

FSRCNN [47] ×3 G100 + Yang91 12K 5G 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 

VDSR [8] G100 + Yang91 665K 613G 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 

DRRN [48] G100 + Yang91 297K 6,797G 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 

MemNet [12] G100 + Yang91 677K 2,662G 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 

IDN [49] G100 + Yang91 588K 56G 34.24/0.9260 30.27/0.8408 29.03/0.8038 27.99/0.8489 

CARN [4] DIV2K 1,592K 119G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 

IMDN [13] DIV2K 703K 72G 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17 /0.8519 

SRFBN-S [45] DIV2K + Flickr2K 376K 832G 34.20/0.9255 30.10/0.8372 28.96/0.8010 27.66/0.8415 

LAPAR-A [46] DIV2K + Flickr2K 594K 114G 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/ 0.8523 

NAS-based methods 

ESRN-F [16] ×3 DIV2K 1,019K 72G 34.32/0.9268 30.35/0.8410 29.09/0.8046 28.11/0.8512 

ESRN-V [16] DIV2K 324K 36G 34.23/0.9262 30.27/0.8400 29.03/0.8039 27.95/0.8481 

JSNet (Ours) DIV2K 522K 53G 34.37/0.9272 30.37/0.8424 29.09/0.8047 28.16/0.8519 

Handcrafted methods 

FSRCNN [47] ×4 G100 + Yang91 12K 5G 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 

VDSR [8] G100 + Yang91 665K 613G 31.35/0.8830 28.02/0.7680 27.29/0.7260 25.18/0.7540 

DRRN [48] G100 + Yang91 297K 6,797G 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 

MemNet [12] G100 + Yang91 677K 2,662G 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 

IDN [49] G100 + Yang91 600K 32G 31.99/0.8928 28.52/0.7794 27.52/0.7339 25.92/0.7801 

CARN [4] DIV2K 1,592K 91G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 

SRFBN-S [45] DIV2K + Flickr2K 483K 1,037G 31.98/0.8923 28.45/0.7779 27.44/0.7313 25.71/0.7719 

IMDN [13] DIV2K 715K 41G 32.21 /0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 

LAPAR-A [46] DIV2K + Flickr2K 659K 94G 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 

NAS-based methods 

ESRN-F [16] ×4 DIV2K 1,019K 41G 32.15/0.8940 28.59/0.7804 27.59/0.7354 26.11/0.7851 

ESRN-V [16] DIV2K 324K 21G 31.99/0.8919 28.49/0.7779 27.50/0.7331 25.87/0.7782 

JSNet (Ours) DIV2K 513K 36G 32.21/0.8949 28.60/0.7812 27.59/0.7355 26.04/0.7839 

8
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Fig. 7. Visual comparison of ×4 image super-resolution of various methods on BSD100 and Urban100 datasets. 

Table 8 

Searching cost of NAS-based image super-resolution methods. 

NAS-based SR method GPU GPU days 

FALSR [17] Tesla V 100 24 

ESRN [16] Tesla V 100 8 

JSNet (Ours) NVIDIA 2080Ti 2 
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nly shows the results on scaling factor ×2 because other re- 

ults are unavailable. As shown in the table, our method out- 

erforms most manually-designed methods with even fewer pa- 

ameters and Multi-Adds. Compared with LAPAR-A, although rela- 

ively inferior results are obtained, our method uses fewer train- 

ng images (DIV2K vs. DIV2K + Flickr2K). Compared with NAS- 

ased methods, our JSNet outperforms the other methods on most 

enchmark datasets. Regarding the ×2 and ×3 setting, our JSNet 

tands out as the best. Besides, as shown in Table 8 , the search

ost of our method is significantly less than NAS-based methods. 

ALSR [17] takes around 3 days on 8 Tesla V100 GPUs to execute 

heir model once. ESRN [16] takes around one day on 8 Tesla V100 

PUs to search. However, our JSNet, based on gradient algorithms, 

akes around 2 days on one NVIDIA 2080Ti GPU. It is worth noting 

hat RDN [9] , RCAN [10] , and RFANet [33] have higher performance 
9

han ours. However, we do not compare these models because it is 

eaningless to compare two models with large differences in pa- 

ameter and depth. 

The visual comparison of ×4 super-resolution on BSD100 and 

rban100 is shown in Fig. 7 . To facilitate subjective comparison vi- 

ually, we enlarge selected regions in the super-resolved images. 

ne can observe that most of compared methods cannot recover 

ost details in the low-resolution image. In contrast, our method 

an recover sharper and clear edges. 

.4.3. Gray image denoising 

In this part, we make further exploration of gray image de- 

oising. For this application, the upsampling module in Fig. 4 is 

emoved. We compare the proposed JSNet with BM3D [50] , 

NRD [51] , DnCNN [52] , MemNet [12] , IRCNN [42] , FFDNet [6] , and

-CubeNet [15] . As shown in Table 9 , our method achieves the 

econd-best results with most noise levels. Although A-CubeNet 

btains slightly better results, it has more than twice the num- 

er of parameters than ours. And it utilizes the non-local opera- 

ion to expand the receptive field, however, the operation is time- 

onsuming, which defeats the purpose of designing an efficient 

etwork. It should be also noted that our JSNet achieves slight 

ains over other methods on BSD68 datasets. This is mainly be- 

ause training images of these methods contain BSD68 datasets, 
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Fig. 8. Visual comparison of gray image denoising of various methods on BSD68 and Urban100 datasets with noise level 50. 

Table 9 

Quantitative results about gray image denoising on Kodak24, BSD68, and Urban100 datasets. 

Method Parameters Kodak24 BSD68 Urban100 

10 30 50 70 10 30 50 70 10 30 50 70 

BM3D [50] N/A 34.39 29.13 26.99 25.73 33.31 27.76 25.62 24.44 34.47 28.75 25.94 24.27 

TNRD [51] N/A 34.41 28.87 27.20 24.95 33.41 27.66 25.97 23.83 33.78 27.49 25.59 22.67 

DnCNN [52] 0.56M 34.90 29.62 27.51 26.08 33.88 28.36 26.23 24.90 34.73 28.88 26.28 24.36 

MemNet [12] 0.67M N/A 29.72 27.68 26.42 N/A 28.43 26.35 25.09 N/A 29.10 26.65 25.01 

IRCNN [42] 0.12M 34.76 29.53 27.45 N/A 33.74 28.26 26.15 N/A 34.60 28.85 26.24 N/A 

FFDNet [6] N/A 34.81 29.70 27.63 26.34 33.76 28.39 26.29 25.04 34.45 29.03 26.52 24.86 

A-CubeNet [15] 1.37M 35.06 29.84 27.77 26.44 33.94 28.50 26.37 25.10 N/A N/A N/A N/A 

JSNet (Ours) 0.79M 35.04 29.80 27.69 26.39 33.93 28.48 26.35 25.05 35.17 29.58 26.95 25.21 

Table 10 

Gray image denoising performance of three NAS-based methods on BSD200. 

BSD200 

Methods Parameters σ = 30 σ = 50 σ = 70 

E-CAE [30] 1.05M 28.23 26.17 24.83 

CLEARER [29] 6.31M 28.54 26.40 25.06 

JSNet (Ours) 0.79M 28.64 26.43 25.06 
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o it is reasonable to perform pretty well on this dataset. Visual 

esults of various methods under noise level σ = 50 are shown 

n Fig. 8 . Compared with other methods, our method not only re- 

oves noise well but keeps texture structure as much as possible. 

To further prove the superiority of JSNet, we also compare our 

ethod with recent NAS-based denoising methods E-CAE [30] and 

LEARER [29] , with the quantitative results on the BSD200 dataset 

hown in Table 10 . We can see that compared with E-CAE, our 

ethod obtains better performance in all noise levels. Compared 

ith CLEARER, we achieve competitive results, and simultaneously, 
10 
he number of trainable parameters of our method is much lower 

han it. 

.4.4. JPEG image deblocking 

We also apply our JSNet to reduce JPEG image deblocking. For 

 fair comparisons, we perform training and evaluation both on Y 

hannel of YCbCr color space. We compare our method with SA- 

CT [53] , ARCNN [7] , TNRD [51] , DnCNN [52] , and A-CubeNet [15] .

s shown in Table 11 , our JSNet achieves the second-best results 

ith all JPEG quality settings under the evaluation of both PSNR 

nd SSIM, and our method presents an attractive performance with 

ewer parameters. We also show visual results under very low JPEG 

uality (q = 10). As shown in Fig. 9 , our method not only re-

oves artifacts but also preserves more details. The superiority of 

ur method benefits from the fact that the proposed JSNet inte- 

rates various attention features from spatial-wise, channel-wise, 

nd pixel dimensions to improve the representational capability of 

odels. 
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Table 11 

Quantitative results about JPEG image deblocking on LIVE1 and Classic5 datasets. 

Dataset q JPEG SA-DCT [53] ARCNN [7] TNRD [51] DnCNN [52] A-CubeNet [15] JSNet (Ours) 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

LIVE1 10 27.77 0.7905 28.65 0.8093 28.98 0.8217 29.15 0.8111 29.19 0.8123 29.54 0.8216 29.49 0.8206 

20 30.07 0.8683 30.81 0.8781 31.29 0.8871 31.46 0.8769 31.59 0.8802 31.93 0.8859 31.88 0.8853 

30 31.41 0.9000 32.08 0.9078 32.69 0.9166 32.84 0.9059 32.98 0.9090 33.35 0.9136 33.31 0.9130 

40 32.35 0.9173 32.99 0.9240 33.63 0.9306 N/A N/A 33.96 0.9247 34.36 0.9289 34.33 0.9284 

Classic5 10 27.82 0.7800 28.88 0.8071 29.04 0.8111 29.28 0.7992 29.40 0.8026 29.84 0.8147 29.74 0.8128 

20 30.12 0.8541 30.92 0.8663 31.16 0.8694 31.47 0.8576 31.63 0.8610 32.04 0.8677 31.94 0.8663 

30 31.48 0.8844 32.14 0.8914 32.52 0.8967 32.78 0.8837 32.91 0.8861 33.30 0.8919 33.25 0.8910 

40 32.43 0.9011 33.00 0.9055 33.34 0.9101 N/A N/A 33.77 0.9003 34.16 0.9048 33.95 0.9030 

Parameters N/A N/A 0.12M N/A 0.56M 1.37M 0.67M 

Fig. 9. Visual comparison of JPEG image deblocking of various methods with JPEG quality q = 10. 
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. Conclusions 

In this paper, we propose a joint operation and attention block 

earch algorithm that aims to exploit the potential of multiple 

onnections from the pre-defined operation blocks and attention 

locks. The operation search module (OSM) and attention search 

odule (ASM) are found by employing differentiable architecture 

earch strategies. Then, we combine OSM with ASM to build the 

oint search module (JSM) and stack them to build the overall ar- 

hitecture. In addition, an effective cross-scale fusion module is 

lso developed to enhance multi-scale features while reducing the 

umber of parameters in the reconstruction process. Many exper- 

mental results demonstrate the proposed new method is able to 

chieve better performance compared with state-of-the-art meth- 

ds for image super-resolution, gray image denoising, and JPEG im- 

ge deblocking. 

Although the proposed method achieves superior performance 

or lightweight image restoration tasks. In the future, there are 

till some works worth exploring. Firstly, the proposed method 

nly constructs the cell-level search space to save search time. 

e can construct the cell-level and network-cell search space 

ointly to pursue better performance. Secondly, the JSNet may 

urther benefit from adversarial training, which can help to al- 

eviate over-smoothing artifacts and produce more detailed fea- 

ures. Thirdly, this paper mainly solves lightweight image restora- 

ion tasks. However, it is well known the performance gap be- 

ween deep networks and lightweight networks still exists. There- 

ore, we can employ attention-based search space into some rep- 

esentative building blocks to pursue better performance. Fourthly, 

e believe that the proposed search algorithm can be further ap- 

lied to other image restoration tasks, such as image derain and 

ehazing. 
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