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Recently, block-based design methods have shown effectiveness in image restoration tasks, which are
usually designed in a handcrafted manner and have computation and memory consumption challenges
in practice. In this paper, we propose a joint operation and attention block search algorithm for im-
age restoration, which focuses on searching for optimal combinations of operation blocks and atten-
tion blocks. Specifically, we first construct two search spaces: operation block search space and atten-
tion block search space. The former is used to explore the suitable operation of each layer and aims
to construct a lightweight and effective operation search module (OSM). The latter is applied to dis-
cover the optimal connection of various attention mechanisms and aims to enhance the feature expres-
sion. The searched structure is called the attention search module (ASM). Then we combine OSM and
ASM to construct a joint search module (JSM), which serves as the basic module to build the final net-
work. Moreover, we propose a cross-scale fusion module (CSFM) to effectively integrate multiple hier-
archical features from JSMs, which helps to mine feature corrections of intermediate layers. Extensive
experiments on image super-resolution, gray image denoising, and JPEG image deblocking tasks demon-
strate that our proposed network can achieve competitive performance. The source code is available on
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1. Introduction

Image restoration (IR) aims to recover high-quality (HQ) images
from low-quality (LQ) images corrupted by various kinds of degra-
dations, which is a classical low-level task and has drawn much at-
tention. However, due to the irreversible nature of the degradation
process, the IR task is an ill-posed problem and very challenging.

Recently, deep learning-based methods [1-3] adopt a data-
driven manner to remove the possible corruptions by mapping
the degraded images to the latent clean versions, which have
been widely investigated and achieve promising performance in
image super-resolution (SR) [4,5], image denoising (DN) [6], and
JPEG image deblocking [7], etc. Among them, the tremendous ad-
vances are mainly benefited from the developments of various
handcrafted neural network architectures including residual con-
nection [8], dense connection [9], attention mechanism [10], and
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multi-scale design [5], etc. However, most above methods focus on
improving the quality of the restored images, and largely neglect
the model complexity and inference speed. For example, MPR-
Net [3] contains 20M parameters and 760G Multi-Adds when the
input image 256 x 256. This severely restricts the practical use of
the CNN-based image restoration methods in the real world.

To overcome the drawback, most methods that concentrate on
architecture designs are proposed to reduce model complexity. In
these handcrafted designs, some methods [11,12] reduce the num-
ber of network parameters by utilizing them recursively, they fur-
ther improve the reconstruction performance using residual units,
memory, or feedback modules but at the cost of running time.
Some methods [4,13] utilize cascaded or multi-branch architec-
tures or exploit different types of convolutions to decrease com-
putational burdens and memory cost. Other methods [14,15] com-
bine various attention mechanisms such as channel attention, spa-
tial attention, and non-local attention to better guide feature ex-
traction, thus improving the quality of restored images. Although
these methods offer a good compromise in terms of PSNR and
model complexity or speed, they also rely on overweight manual
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Fig. 1. Comparisons of various connection patterns of attention mechanisms, where CA and SA denote channel attention and spatial attention, respectively. Composition (i)
is based on sequential manner, composition (ii) is based on parallel manner, and composition (iii) is our proposed attention search space that contains potential connection
patterns of various attentions. It is worth noting that composition (i) and (ii) are special cases of composition (iii).

designs and expert experience, which leads to spending consider-
able consumption on unnecessarily repetitive designs. For instance,
attention-based architectures often employ an attention module to
a cell or a block. As shown in Fig. 1(a) and (b), channel attention
and spatial attention can be organized in a sequential or paral-
lel manner, which results in the representational capability of the
model is subject to previous artificial arrangements. However, a
common characteristic is that most of these methods are block-
based design mode. This also fully demonstrates the feasibility of
this design mode.

Recently, Neural Architecture Search (NAS) algorithm [16,17] has
been proposed, which refers to automatically find a desirable
neural architecture by using one of the following search strate-
gies, namely, evolutionary algorithm (EA), reinforcement learn-
ing (RL), gradient-based methods, etc. Compared with the manu-
ally designed architectures, the networks found by NAS algorithms
achieve better performance and have fewer parameters. However,
EA-based and RL-based search methods [16,17] often face the ex-
plosion problem of architecture combination, which is computa-
tionally inefficient and time-consuming. In contrast, gradient-based
methods [18,19] can effectively reduce the training time and attract
wide attention.

Motivated by the search efficiency of the gradient-based
NAS [18], effectiveness of attention mechanism, and block-based
design mode, we propose a joint operation and attention block
search algorithm to hunt for efficient lightweight image restoration
networks, namely Joint Search Network (JSNet). This may be the
first attempt towards an automatic search of desirable attention-
based neural architectures in the image restoration field. Specifi-
cally, the method consists of two search spaces: operation block
search space and attention block search space. The operation block
search space aims to discover the optimal building block at the
appropriate location, thus obtaining the best combination of var-
ious types of operations with as few parameters as possible. We
called the searched structure operation search module. There are
two manners to utilize attention mechanisms: one is to embed
various independent attention blocks in the operation block search
space to form a multi-branch structure, and the other is to build
an attention block search space that can progressively emphasize
meaningful features. It is obvious that the former just add more
branches to the connection as shown in Fig. 1(b), and the Ilat-
ter helps to discover potential forms of connection and inner cor-
relation of various attention mechanisms. Therefore, constructing
an attention block search space structure, depicted in Fig. 1(c),
should be a better choice. We call the searched structure attention
search module. Finally, taking two modules together, we design a
joint search module (JSM) to build the final network, as shown in
Fig. 2(a).

In addition, we design a cross-scale fusion module (CSFM),
which can effectively integrate all features extracted by JSMs. The
benefits of this module are twofold. First, the module adopts but-
terfly structure [20], which can generate various linear combina-

tions of multi-scale features, thus enhancing the information com-
munication between different types of features. Second, in the spe-
cific IR task (i.e., image super-resolution), the number of feature
maps in sub-pixel convolution affects both the computational com-
plexity and performance of the network. However, the proposed
CSFM has reduced the number of feature maps before the features
are fed into a high-dimensional space, thus achieving a great trade-
off between performance and the number of parameters. The de-
tailed structure of CSFM is shown in Fig. 4(b).

Part of our previous work has been reported in [21]. Compared
to the preliminary version, in this manuscript, we have made im-
provements in the following aspects: (1) The initial version merely
solves the image super-resolution task. This paper, however, deals
with multiple image restoration tasks using the NAS-based algo-
rithm. Besides, we construct a larger attention search space in the
search phase and stack more searched blocks to formulate the final
network for the gray image denoising and JPEG image deblocking
tasks. (2) We perform a more comprehensive survey of existing re-
lated works, e.g.,adding the review of image restoration and neu-
ral architecture search works in Section 2. (3) We conduct more
empirical evaluations and more experimental analysis in Section 4.
In addition, more experimental details and more comparison ex-
periments are provided. In brief, although there are some literal
overlaps, the new content in this manuscript makes the proposed
search method much more general, comprehensive, and convinc-
ing. In summary, the main contributions of this paper are listed as
follows:

(1) Based on the differentiable architecture search, we propose a
joint operation and attention block search algorithm that en-
ables operation type search and attention mechanism search
simultaneously. It provides more room for searching for bet-
ter networks of image restoration.

(2) We propose the operation block search space and attention
block search space to find the optimal combination of op-
eration block and attention block, respectively. Taking these
two searched modules together, we construct a joint search
module to formulate the final network.

(3) We propose the cross-scale fusion module (CSFM) based on
butterfly structures and multi-scale features, which can be
embedded in the searched network, thus helping to expand
representation space for achieving more powerful networks.

2. Related work
2.1. CNN-based image restoration

To date, many image restoration methods [5,22] have been pro-
posed, which achieve remarkable performance in various applica-
tions. For instance, SRCNN [23] firstly apply three convolutional
layers to image super-resolution, which achieves superior perfor-
mance compared with conventional methods. ARCNN [7] uses a
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Fig. 2. (a) The architecture of joint search module. As an example, (b) and (c) indicate how the features are propagated to the third node in the operation block search
space and the attention block search space, respectively. Each node with an index outputs a latent representation (e.g., feature maps). In operation block search space, an
operation flow from the i-th node to j-th node is formulated by weighting candidate operations (denoted as op,) with a set of hyper-parameters, namely, { °,”k)} We only
sample part of input features with a mask M;; in the channel dimension. In attention block search space, the mixing process of our candidate attentions (denoted as atty)

with ,u P J) is denoted as an attention flow from the i-th node to j-th node.

four-layer convolutional network for JPEG image deblocking. To
stack more convolutional layers and ease the difficulty of training a
deep network, VDSR [8] and DRCN [11] employ gradient clipping,
residual learning, or recursive supervision to tackle image super-
resolution tasks. FFDNet [6] constructs a flexible network to deal
with noise on different levels, as well as spatially variant noise.
CDNet [24] investigates the potentials of complex-valued CNNs for
image denoising. YOLY [25] proposes an unsupervised and un-
trained neural network for image dehazing for the first time. How-
ever, these methods are for specific image restoration tasks. Unlike
these methods, [14,15] design a unified model framework that can
be generalized to different image restoration tasks. NLRN [14] in-
corporates non-local operations into a recurrent neural network
for image restoration. A-CubeNet [15] combine multiple attentions
to enhance feature representations. AirNet [26] designs a unified
framework to recover images from multiple corruptions in an all-
in-one fashion. Although the overall performance of image restora-
tion has dramatically boosted, with it come the increases of the
number of parameters and the amount of computation. Besides,
these hand-crafted networks are labor-intensive to seek an optimal
architecture, while the image restoration performance is sensitive
to neural architecture according to the advances in recent years.

2.2. Neural architecture search

Search strategy. NAS aims to automatically discover satisfac-
tory network architecture [16,17] by using various search strate-
gies such as evolutionary algorithm (EA), reinforcement learning
(RL), gradient-based methods, etc. Some early works [16,17] mainly
adopt EA for optimizing neural architecture and parameters, which
obtain the best architecture via the iterative crossovers and mu-
tations of population. RL-based algorithms, as an alternative, adopt

policy gradients [27] and Q-learning techniques to train a recurrent
neural network that acts as a meta-controller to generate poten-
tial architectures by exploring a predefined search space. However,
both EA-based and RL-based methods are inefficient in search and
often require a large number of computations and training time.
To solve this issue, recent works have been focused on gradient-
based methods, such as DARTS [18] and PC-DARTS [19]. The core
idea of this method is to relax the discrete and non-differentiable
architecture to a continuous and differentiable surrogate, thus al-
lowing the efficient search of the architecture using gradient de-
scent. Many recent works including ours and [28,29] are inspired
by this differentiable NAS.

NAS for image restoration. To date, some works apply the NAS
strategy to image restoration. E-CAE [30] employs EA to search
for architecture autoencoders for image impainting and denoising.
FALSR [17] treats the super-resolution task as a constrained multi-
objective optimization problem and utilizes RL and EA to search
lightweight models. ESRN [16] constructs multiple handcrafted ef-
ficient residual dense blocks and then resorts to EA to search for
the optimal network architecture in these given building blocks
for image super-resolution. However, all these methods mentioned
above require enormous computational resources and take a large
amount of GPU time for searching. Two more related works are
HiNAS [28] and CLEARER [29] that employ gradient-based search
strategy. HiNAS employs operations with adaptive receptive field
to build a flexible search space then applies differentiable archi-
tecture search to image denoising and deraining with less search
time. CLEARER designs a multi-scale search space that contains dif-
ferent task-flexible modules and then leverages the differentiable
search strategy to search for a super-network.

Motivated by the superior performance and search efficiency,
we also employ the gradient-based approach as our search strat-
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Fig. 3. The architecture of the candidate operation block and its components. The
block contains two basic cells and is constructed based on residual dense block [9].
The ‘Conv-3’ and ‘Conv-1’ denote the 3 x 3 convolution and 1 x 1 convolution,
respectively, ‘Conv-sep’ denotes the separated convolution, and ‘Conv-dil' denoted
the dilated convolution.

egy but with slight differences. Firstly, both HiNAS and CLEARER
are differentiable. However, our work is closely related to PC-
DARTS [19], which samples a subset of channels into the opera-
tion selection block while bypassing the rest directly in a shortcut,
therefore performing a more efficient search. Secondly, we con-
struct two search spaces to find optimal operation blocks and op-
timal attention blocks, respectively. HiNAS can search for the op-
eration of each layer. However, CLEARER only explores when to
fuse low-level and high-level features based on three task-flexible
modules, and thus neglects to search the concrete module design.
This allows CLEARER to search for larger network within the same
search time, but also leads to a sub-optimal solution.

3. Proposed method
3.1. Constructing the joint search module

Many previous works [9,10] focus on designing efficient build-
ing blocks to extract features. These blocks typically consist of a se-
ries of convolution layers and specific attention mechanisms, thus
neglecting the connections between different types of convolutions
or various attention mechanisms, resulting in sub-optimal results.
In this section, we utilize neural architecture search algorithms
to obtain the optimal operation search module (OSM) and atten-
tion search module (ASM) from two search spaces. As shown in
Fig. 2(a), a joint search module (JSM) is proposed based on these
two modules and residual learning strategy. We denote I,;,_1 and I,
as the input and output of the JSM at the m-th layer. The process
of feature propagation in the module can be formulated as:

Fo = Hosm (Im-1). (1)

Im = Hasm (Fo) + In—1. (2)

where Hgpgy and Hasy denote the function of OSM and ASM re-
spectively, Fy denotes the output and input of the m-th OSM and
the m-th ASM.

3.1.1. Operation block search

For the image restoration task, we redesign a series of candi-
date operation blocks. Inspired by the effectiveness of the residual
dense block (RDB) [9], we construct several novel operation blocks
based on the following two aspects: (1) the convolution number
in RDB is set to 2, and the growth rate [9] is set to 16; (2) the
common convolution layer is replaced with various cells such as
common-cell, sep-cell, dil-cell, light-cell, and shallow-cell to en-
sure effective and lightweight network. Therefore, apart from the
skip connection and none [18], there are five types of candidate
operation blocks, as depicted in Fig. 3.
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Then, we first adopt a 1 x 1 convolution layer to adaptively
control the dimensions of feature maps. Given the input feature
I;,_1, we have:

S0 = Wconv(’m—])’ (3)

where Weony is the weight of 1 x 1 convolution layer. Then the Sy
will be inputted into the operation block search space. Here, we
adopt the cell-based [27] manner to construct search space, where
the cell is defined by a directed acyclic graph with several nodes.
In this search space, we denote N; operation nodes with the index
from 0 to N; — 1, each node takes the outputs of all previous nodes
as input and then produces new feature maps. Note that the out-
put of the node with index 0 equals Sy (so-called feature maps).
Taking the j-th node as an example, the output of this node is cal-
culated as follows:
j-1
Sj:ZO(i,j)(si)’0<j<le (4)
i=0

where S; is the output of the j-th node. O; () represents the
operation flow that transforms S; from the i-th node to j-th node,
where i < j. Let O be the set of candidate operations, every op-
eration o € O from i-th node to j-th node has been allocated an
architecture parameter “3]'- We compute the architecture weight
adopting softmax function for every operation from i-th node to
j-th node:

exp {af;}
> co EXP {oel"]}
Here, to obtain the output of each node, we adopt the channel

sampling strategy [19] to sample a subset of channels into the op-
eration flow:

0 _
@i jy =

(5)

R

0. j(S) =[(1 =M j)) *S;, Zw?f’f) -opr (M jy * Si)]1. (6)
k=1

where [---] denotes the channel concatenation operation,

{op1,0p,,---,0pg} denotes R possible operation blocks, and
w?f;f) corresponds to the weight of operation op, from i-th node to
Jj-th node. M; ;, denotes the mask which assigns 1 to the selected
channels and O to the remaining ones. Therefore, M; ;; *S; and
(1 =M j)) +S; represent the selected and remaining channels,
respectively. Finally, the outputs of all nodes are fused by the
concatenation operation followed by a 1 x 1 convolution layer as
follows:

FO =Wconv[507slv"' 7SN]—1], (7)

where Fy denotes the output of operation block, Weony is the weight
of 1 x 1 convolution layer.

3.1.2. Attention block search

Previous works [10,31] employ different attention mechanisms
to a basic building block to enhance the representational capabil-
ity of models. These methods require subtle handcrafted designs.
In this subsection, we construct an attention block search space, as
illustrated in Fig. 2(a). The search space is a directed acyclic graph
containing a sequence of N, nodes. Each node is a potential rep-
resentation of features, and each directed edge is regarded as an
attention flow. Similar to how we compute the architecture weight
of each operation block above, we obtain the probability of each
attention block using a softmax function overall candidate atten-
tion blocks:

exp {87}
Yocoexp{BY}

Taking the flow from the i-th node to the j-th node for exam-
ple, where i < j, the core idea of an attention flow is to formulate

Vv(()i,j) = (8)
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Fig. 4. (a) The overall architecture of the proposed joint search network (JSNet). The ‘Upsampling’ consists of one 3 x 3 convolution followed by one sub-pixel [36] convolu-
tion layer and is specific for the image super-resolution task. (b) The proposed cross-scale fusion module (CSFM), the ‘PA’ denotes the pixel attention proposed in [34], the

‘CA’ denotes channel attention proposed in [10].

Table 1
The list of candidate attention blocks to be searched.
Type Channel-wise Pixel-wise Spatial
1 Channel Attention (CA) [10] Pixel-wise Attention (PA) [34] Spatial Attention (SA) [32]
2 Contrast-aware Channel Attention (CCA) [13] Cost-effective Attention (CEA) [35] Enhanced Spatial Attention (ESA) [33]

the features propagated from i-th node to j-th node as a weighted
summation of T candidate attentions:

T

Agj(F) = ZMZ“;) -atty (F), 9)
k=1

where {attq, att,,---,atty} denotes T possible attention types. F

denotes the output of the i-th attention node. We mix candidate
attentions in a continuous relaxation way by weighting att,(o)
with /L?f[]") The output of each node in attention block is the sum-
mation of all associated attention flows, which can be denoted as:

jo1
F=Y Aqj(R),0<j<Na.
i=0

(10)

Note that the output of the first node equals to Fy, therefore, the
output of overall attention block is denoted as Fy,_;. Due to the
use of residual structure strategy in JSM, we compute the output
by summing Fy, 1 with I,_;.

Consider that lean blocks are essential to design fast and
lightweight image restoration networks. Therefore, we introduce
a variety of lean and effective attention mechanisms to build at-
tention block search space. All these attention mechanisms can
be divided into three categories, as shown in Table 1. The first
type is based on the channel level, such as channel-wise at-
tention [10,13]. The second type is spatial attention, including
SA [32] and ESA [33]. The third type is based on pixel-wise, such
as PA [34] and CEA [35]. Besides, skip connection is added to the
attention search space. These attention mechanisms are all conve-
nient to be embedded in our attention search block, as shown in
Fig. 2(a). It is noted that CCA and SA are only used in gray image
denoising and JPEG image deblocking tasks. Therefore, apart from
skip connection, there are four and six candidate attention opera-
tions in attention block search space for image SR and other image
restoration tasks, respectively.

3.2. From search to evaluate

3.2.1. Overall search procedure

Benefiting from the continuously relaxed representation of the
search space, we can search for the super-network by updating the
architecture parameters o, 8 and weight parameters 6 of the net-
work using gradient descent algorithms such as ADAM. We train

the network with the following L; loss:

N
(a, B,0) =argmin ) | Fy; o, B,6) — il (1)
apff g

where y; and x; are the i-th pair of low quality and high qual-
ity image patches respectively, and F(y;; «, B8,0) denotes the re-
constructed image patch. To ensure better search results, we split
the search procedure into two stages. In the first stage, we only
optimize the weights (kernels in convolution layers) for enough
epochs to avoid the performance being too bad, we call it a
warm-up. In the second stage, we activate the architecture search.
We alternatively optimize the weights parameters by descending
Vo Liain (0, o, B) on the training set, and optimize the architec-
ture parameters by descending V,, g£L,(6, , B) on the validation
set. After the search stage, for each operation flow Oy j(#) and at-
tention flow A; (), we select the operation block and attention
block with the maximum value which is determined by w and g,
respectively. Thereby, we obtain the exact architecture of the joint
search module.

3.2.2. Deriving the final networks

Based on searched modules above, we build a lightweight joint
search network (JSNet) for image restoration tasks, as illustrated
in Fig. 4(a). To effectively integrate all features extracted by JSMs,
we propose a cross-scale fusion module (CSFM) which reduces the
channel dimension without losing contextual information of deep
features. As shown in Fig. 4(b), our CSFM is a multi-branch struc-
ture with pixel-attention modules [34] in each branch and contains
several channel attention modules between two branches. We em-
ploy a 1 x 1 convolution layer at the beginning to reduce feature
dimensions by half. Let x denote the features after the reduction
operation. We can denote the linear combination of feature propa-
gation as the following equations:

X{P = PAYP(x) + CA"n (x),

x4ovm = CAJP (PAYP (x)) + X,

X;p — CAcziown (pAdown (thiown)) + X;IP’
Xgown — CAgp(Xl;p) 4 pAdown (thiuwn)’
where the superscripts and subscripts denote the position and the
order that appeared on the module. Notably, we replace the 3 x 3
convolution with 5 x 5 convolution in the PAYP module to extract
multi-scale spatial information. Finally, x;p and xg”"“” are summed

to obtain the outputs of the module. The elaborate settings of net-
works will be introduced in Section 4.1.

(12)
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Fig. 5. The derived operation search module for (a) image super-resolution, (b) gray image denoising, and (c) JPEG image deblocking. The derived attention search module

for (d) image super-resolution, (e) gray image denoising, and (f) JPEG image deblocking.

4. Experiments
4.1. Experimental settings

4.1.1. Datasets

We apply our JSNet to three classical image restoration tasks:
image super-resolution, gray image denoising, and JPEG image de-
blocking. The DIV2K [37] dataset is used to train all of our models.
The noisy images are generated by adding white Gaussian noise
to the corresponding clean image with o 10, 30, 50, 70. The
compressed images are generated by using Matlab JPEG encoder
with JPEG quality setting q = 10, 20, 30, 40. As for image super-
resolution, we follow the same setting as CARN [4]. Set5 [38],
Set14 [39], BSD100 [40], and Urban100 [41] are adopted as the test
datasets. For the gray image denoising, we follow the same set-
ting as IRCNN [42]. BSD68 [40] and Kodak24 are used as the test
datasets. For JPEG image deblocking, we follow the same setting
as ARCNN [7]. LIVE1 [43] and Classic5 [44] are applied as the test
datasets. We adopt the mean PSNR and/or SSIM to evaluate the re-
sults.

4.1.2. Search settings

The search network stacks four JSMs to construct the overall
network and each search space has four nodes. The number of
channels in candidate operation blocks and attention blocks is set
to 16 and 64, respectively. The input size of the LQ image is set to
64 x 64 and the minibatch size is set as 16. During the search
stage, 800 training images Dy, from DIV2K are used to opti-
mize the weights, and 100 validation images D,, from DIV2K are
used to optimize the architecture parameters. All datasets are aug-
mented by flipping horizontally or vertically and rotating 90°. We
optimize the 6, o, B parameters with two ADAM optimizers. For
weight parameter 6, the learning rate is set to 10~%, the momen-
tum parameter and exponential moving average parameter are set
as (0.9,0.999) and the weight decay is set to 0. For architecture pa-
rameters  and B, the learning rate is set to 10~3, the momentum
parameter and exponential moving average parameter are set as
(0.9,0.999) and the weight decay is set to 10~3. The learning rates
of the warm-up process and searching process are both set to 10—,
The warm-up and overall search processes take about 2 x10* iter-
ations and 4 x10° iterations, respectively.

4.1.3. Training settings

The final network architecture for image super-resolution con-
sists of five JSMs, one upsampling module, and one CSFM. How-
ever, for other image restoration tasks, we replace the upsampling

module with one JSM, which means there are six JSMs across the
final network. For retraining the final network, we use dataset
Dygin With the same data augmentation as the searching stage. We
train the model in 108 iterations and randomly select 16 LQ im-
ages sized by 64 x 64 as the inputs. The ADAM algorithm with 8;
=09, By = 0.999, € = 108 is adopted to optimize the network.
The learning rate is set as 2 x 10~% and then decreases to half for
every 2 x 10° iterations. Our network is implemented by PyTorch
framework with NVIDIA 2080Ti GPU.

4.2. Searched results

The derived operation search module and attention search
module for various image restoration tasks are shown in Fig. 5. We
can observe that:

(1) The structures of our derived modules for three different
image restoration tasks are quite different from each other.
However, many previous works focus on utilizing unified
frameworks to solve various image restoration tasks, thus re-
sulting in worse performance.

(2) We provide enough candidate blocks of different sizes to
choose from, including five operation blocks and six at-
tention blocks in the operation block search space and at-
tention block search space, as mentioned in Fig. 3 and
Table 1. Therefore, the searched structures can achieve a bet-
ter trade-off between performance and model complexity.

(3) The fact that searched modules select proper operation
blocks and attention blocks at suitable positions instead of
simply integrating complex blocks indicates the proposed
search algorithm is effective.

4.3. Ablation study

4.3.1. Benefits of searching for operation blocks

In this section, to evaluate the benefits of searching for oper-
ation blocks, we apply the proposed method to the image super-
resolution task. In detail, we first obtain the operation search mod-
ule (OSM) by operation block search space. The searched structure
is shown in Fig. 5(a). Based on the searched results, we replace
the searched operation blocks between paired nodes in the OSM
with one based on common_cells, light_cells, and shallow_cells, re-
spectively. We denote these operation blocks as RDB-common_cell,
RDB-light_cell, and RDB-shallow_cell. The detailed structures of
several cells are shown in Fig. 3. Here, we do not add ASM and
CSFM in the network in order to evaluate the performance of this
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Table 2
Comparisons of the number of parameters and mean values of PSNR evaluated on
various models. We record the best results for x4 image SR in 500 epochs.
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Table 4
Investigations of JSM and CSFM. We record the best PSNR for x4 image super-
resolution in 500 epochs.

Operation block Parameters Set5 Set14 BSD100 Urban100 Name 1 2 3 4
RDB-common_cell 631K 31.89 28.42 27.44 25.64 JSM X N X v
RDB-light_cell 484K 31.74 28.33 27.38 25.48 CSFM X X N v
RDB-shallow_cell 520K 31.80 28.37 27.41 25.57 Parameters 610K 629K 411K 430K
RDB-searched 588K 31.91 28.44 27.47 25.69 PSNR on Set5 31.60 31.98 31.79 32.04
PSNR on Set14 28.27 28.52 28.35 28.54
Table 3
Comparison of the number of parameters and mean values of PSNR obtained by Table 5

using various attention mechanism. We record the best results for x4 image SR in
500 epochs.

Attention block Parameters Set5 Set14 BSD100 Urban100
RB 610K 31.60 28.26 27.34 25.37
RB-CA 615K 31.67 28.27 27.36 25.44
RB-SA 617K 31.74 28.40 27.40 25.53
RB-PA 627K 31.89 28.42 27.44 25.64
RB-CCA 617K 31.69 28.30 27.41 25.47
RB-CEA 620K 31.72 28.31 27.46 25.57
RB-ESA 623K 31.78 28.45 27.46 25.60
RB-ASM 651K 31.95 28.48 27.48 25.80

module separately. The comparison results for x4 image super-
resolution on several datasets are lists in Table 2.

From Table 2, it is obviously observed that the results of RDB-
searched outperform the results using other three types of opera-
tion blocks. Compared with RDB-common_cell, our RDB-searched
could improve the PSNR by 0.02dB, 0.02dB, 0.03dB and 0.05dB on
Set5, Set14, BSD100 and Urban100 with fewer parameters. It in-
dicates that the operation search module has found the optimal
architecture from candidate operation blocks.

4.3.2. Benefits of searching for attention blocks

We obtain the attention search module (ASM) by attention
block search space. To evaluate the effect of searched ASM, we
use the search network as the basic network and compare the
performance in several classical attention mechanisms. As done in
PAN [34], we also replace the JSM with the same number of resid-
ual blocks (RB), residual blocks with channel attention (RB-CA),
residual blocks with spatial attention (RB-SA), residual blocks with
pixel attention (RB-PA), residual blocks with contrast-aware chan-
nel attention (RB-CCA), residual blocks with cost-effective attention
(RB-CEA), residual blocks with enhanced spatial attention (RB-ESA),
and residual blocks with our attention module (RB-ASM), respec-
tively. Note that all mentioned attention layers are embedded in
the tail of RB. The quantitative comparison results are reported in
Table 3. From these results, it is obvious that our RB-ASM outper-
forms the other attention methods and significantly improves the
PSNR value compared with the baseline. This fully demonstrates
that we have found optimal attention combinations based on the
attention block search space.

4.3.3. Benefits of JSM and CSFM

To make a fair comparison, we replace JSM in the search net-
work with the same number of residual blocks (RB) to construct
baseline model. In Table 4, the baseline achieves the lowest PSNR
value on Set14 (x4). When JSM or CSFM is adopted, the PSNR val-
ues are increased by + 0.25 dB and + 0.08 dB compared with the
baseline on Set14 (x4), respectively. Note that the model only with
CSFM has 1/3 fewer parameters than the baseline. Moreover, the
results of the last column demonstrate that the combination of our
proposed JSM and CSFM achieve a comprehensive balance of the
number of parameters and performance.

In Table 5, we further study the setting of multi-scale in the
CSFM. When the size of convolutional kernel in PAP and PAdown

Investigation of scale setting in cross-scale fusion module.

Cross-scale fusion module

Scale all 3 x 3 all 5 x 5 cross-scale

PSNR on Set5 31.99 31.92 32.04

PSNR on Set14 28.50 28.47 28.54
Table 6

Comparisons of running time (seconds) of various image SR methods on HR images
of sizes 256 x 256, 512 x 512, and 1024 x 1024 for x2 scaling factor.

Size 256 x 256 512 x 512 1024 x 1024
CARN [4] 0.018 0.032 0.126
SREBN-S [45] 0.034 0.054 0.211
IMDN [13] 0.026 0.039 0.137
FALSR [17] 0.074 0.090 0.421
LAPAR-A [46] 0.045 0.062 0.287
JSNet (Ours) 0.031 0.056 0.244

is set 3 x 3 and 5 x 5, the PSNR value is inferior to the result
of cross-scale setting. This fully demonstrates the proposed CSFM
integrates the multi-scale spatial information, boosting the repre-
sentational capability of the network.

4.4. Comparisons with the state-of-the-art methods

We first make a brief complexity analysis of some lightweight
image super-resolution methods and then compare the pro-
posed JSNet with some state-of-the-art methods in image super-
resolution, gray image denoising, and JPEG image deblocking.

4.4.1. Computational complexity

To obtain a more comprehensive understanding of the model
complexity, we compare our ]JSNet against various benchmark
methods in terms of the Multi-Adds and the number of the pa-
rameters on the Set5 dataset x2 dataset. We assume the high-
resolution image size to be 720p (1280 x 720) to calculate Multi-
Adds. As shown in Fig. 6, our JSNet outperforms all state-of-the-art
models that have less than 1M parameters. Especially, ]SNet has
fewer network parameters and Multi-Adds than IMDN, LAPAR-A,
FALSR-A, and ESRN-F, but our method outperform all these mod-
els. As shown in Table 6, we also use official codes of the compared
methods to obtain the average running time on various HR sizes.
Each result is an average value obtained by repeating five exper-
iments to ensure a fair comparison. Although our proposed JSNet
cannot achieve the best result in each metric, our method makes a
better trade-off between performance and model complexity.

4.4.2. Image super-resolution

We compare our JSNet with ten representative image super-
resolution methods: FSRCNN [47], VDSR [8], DRRN [48], Mem-
Net [12], IDN [49], CARN [4], IMDN [13], LAPAR [46], FALSR [17],
and ESRN [16]. Note that, the first nine methods are hand-
crafted architectures and the last two are NAS-based methods.
Table 7 shows quantitative comparisons for scaling factors x2, x3,
and x4 on two commonly-used metrics: peak signal-to-noise ra-
tio (PSNR) and structural similarity index measure (SSIM). FALSR
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Fig. 6. Comparison between our proposed JSNet and other lightweight methods on Set5 for x2 setting. Circle sizes are set proportional to the number of parameters.

Table 7

Comparisons on multiple benchmark datasets for lightweight image super-resolution networks. The Multi-Adds is calculated corresponding to the 1280 x 720 high-
resolution image. The best results are emphasized with bold.

Methods Scale Train Data Parameters, Multi-Adds |, Set5 Set14 BSD100 Urban100
PSNR/SSIM4 PSNR/SSIM? PSNR/SSIM 4 PSNR/SSIM 4
Handcrafted methods
FSRCNN [47] x2 G100+Yang91 12K 6G 37.05/0.9560 32.66/0.9090 31.53/0.8920 29.88/0.9020
VDSR [8] G100+Yang91 665K 613G 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140
DRRN [48] G100+Yang91 297K 6,797G 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188
MemNet [12] G100+Yang91 677K 2,662G 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195
IDN [49] G100+Yang91 579K 125G 37.85/0.9598 33.58/0.9178 32.11/0.8989 31.95/0.9266
CARN [4] DIV2K 1,592K 223G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256
SRFBN-S[45] DIV2K+Flickr2K 282K 680G 37.78/0.9597 33.35/0.9156 32.00/0.8970 31.41/0.9207
IMDN [13] DIV2K 694K 159G 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283
LAPAR-A [46] DIV2K+Flickr2K 548K 171G 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283
NAS-based methods
FALSR-A [17] x2 DIV2K 1,021K 235G 37.82/0.9595 33.55/0.9168 32.12/0.8987 31.93/0.9256
FALSR-B [17] DIV2K 326K 75G 37.61/0.9585 33.29/0.9143 31.97/0.8967 31.28/0.9191
FALSR-C [17] DIV2K 408K 94G 37.66/0.9586 33.26/0.9140 31.96/0.8965 31.24/0.9187
ESRN-F [16] DIV2K 1,019K 129G 37.93/0.9602 33.56/0.9171 32.16/0.8996 31.99/0.9276
ESRN-V [16] DIV2K 324K 73G 37.85/0.9600 33.42/0.9161 32.10/0.8987 31.79/0.9248
JSNet (Ours) DIV2K 476K 109G 38.05/0.9608 33.63/0.9180 32.19/0.8997 32.17/0.9284
Handcrafted methods
FSRCNN [47] x3 G100+Yang91 12K 5G 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080
VDSR [8] G100+Yang91 665K 613G 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290
DRRN [48] G100+Yang91 297K 6,797G 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378
MemNet [12] G100+Yang91 677K 2,662G 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376
IDN [49] G100+Yang91 588K 56G 34.24/0.9260 30.27/0.8408 29.03/0.8038 27.99/0.8489
CARN [4] DIV2K 1,592K 119G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493
IMDN [13] DIV2K 703K 72G 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519
SRFBN-S[45] DIV2K+Flickr2K 376K 832G 34.20/0.9255 30.10/0.8372 28.96/0.8010 27.66/0.8415
LAPAR-A [46] DIV2K+Flickr2K 594K 114G 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523
NAS-based methods
ESRN-F [16] x3 DIV2K 1,019K 72G 34.32/0.9268 30.35/0.8410 29.09/0.8046 28.11/0.8512
ESRN-V [16] DIV2K 324K 36G 34.23/0.9262 30.27/0.8400 29.03/0.8039 27.95/0.8481
JSNet (Ours) DIV2K 522K 53G 34.37/0.9272 30.37/0.8424 29.09/0.8047 28.16/0.8519
Handcrafted methods
FSRCNN [47] x4 G100+Yang91 12K 5G 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280
VDSR [8] G100+Yang91 665K 613G 31.35/0.8830 28.02/0.7680 27.29/0.7260 25.18/0.7540
DRRN [48] G100+Yang91 297K 6,797G 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638
MemNet [12] G100+Yang91 677K 2,662G 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630
IDN [49] G100+Yang91 600K 32G 31.99/0.8928 28.52/0.7794 27.52/0.7339 25.92/0.7801
CARN [4] DIV2K 1,592K 91G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837
SRFBN-S[45] DIV2K-+Flickr2K 483K 1,037G 31.98/0.8923 28.45/0.7779 27.44/0.7313 25.71/0.7719
IMDN [13] DIV2K 715K 41G 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838
LAPAR-A [46] DIV2K+Flickr2K 659K 94G 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871
NAS-based methods
ESRN-F [16] x4 DIV2K 1,019K 41G 32.15/0.8940 28.59/0.7804 27.59/0.7354 26.11/0.7851
ESRN-V [16] DIV2K 324K 21G 31.99/0.8919 28.49/0.7779 27.50/0.7331 25.87/0.7782
JSNet (Ours) DIV2K 513K 36G 32.21/0.8949 28.60/0.7812 27.59/0.7355 26.04/0.7839
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Fig. 7. Visual comparison of x4 image super-resolution of various methods on BSD100 and Urban100 datasets.

Table 8
Searching cost of NAS-based image super-resolution methods.
NAS-based SR method GPU GPU days
FALSR [17] Tesla V 100 24
ESRN [16] Tesla V 100 8
JSNet (Ours) NVIDIA 2080Ti 2

only shows the results on scaling factor x2 because other re-
sults are unavailable. As shown in the table, our method out-
performs most manually-designed methods with even fewer pa-
rameters and Multi-Adds. Compared with LAPAR-A, although rela-
tively inferior results are obtained, our method uses fewer train-
ing images (DIV2K vs. DIV2K + Flickr2K). Compared with NAS-
based methods, our JSNet outperforms the other methods on most
benchmark datasets. Regarding the x2 and x3 setting, our JSNet
stands out as the best. Besides, as shown in Table 8, the search
cost of our method is significantly less than NAS-based methods.
FALSR [17] takes around 3 days on 8 Tesla V100 GPUs to execute
their model once. ESRN [16] takes around one day on 8 Tesla V100
GPUs to search. However, our JSNet, based on gradient algorithms,
takes around 2 days on one NVIDIA 2080Ti GPU. It is worth noting
that RDN [9], RCAN [10], and RFANet [33] have higher performance

than ours. However, we do not compare these models because it is
meaningless to compare two models with large differences in pa-
rameter and depth.

The visual comparison of x4 super-resolution on BSD100 and
Urban100 is shown in Fig. 7. To facilitate subjective comparison vi-
sually, we enlarge selected regions in the super-resolved images.
One can observe that most of compared methods cannot recover
lost details in the low-resolution image. In contrast, our method
can recover sharper and clear edges.

4.4.3. Gray image denoising

In this part, we make further exploration of gray image de-
noising. For this application, the upsampling module in Fig. 4 is
removed. We compare the proposed JSNet with BM3D [50],
TNRD [51], DnCNN [52], MemNet [12], IRCNN [42], FFDNet [6], and
A-CubeNet [15]. As shown in Table 9, our method achieves the
second-best results with most noise levels. Although A-CubeNet
obtains slightly better results, it has more than twice the num-
ber of parameters than ours. And it utilizes the non-local opera-
tion to expand the receptive field, however, the operation is time-
consuming, which defeats the purpose of designing an efficient
network. It should be also noted that our JSNet achieves slight
gains over other methods on BSD68 datasets. This is mainly be-
cause training images of these methods contain BSD68 datasets,
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Fig. 8. Visual comparison of gray image denoising of various methods on BSD68 and Urban100 datasets with noise level 50.

Table 9

Quantitative results about gray image denoising on Kodak24, BSD68, and Urban100 datasets.
Method Parameters Kodak24 BSD68 Urban100

10 30 50 70 10 30 50 70 10 30 50 70

BM3D [50] N/A 3439 29.13 26.99 25.73 33.31 27.76 25.62 2444 3447 28.75 25.94 24.27
TNRD [51] N/A 34.41 28.87 27.20 24.95 33.41 27.66 25.97 23.83 33.78 27.49 25.59 22.67
DnCNN [52] 0.56M 34.90 29.62 27.51 26.08 33.88 28.36 26.23 24.90 34.73 28.88 26.28 24.36
MemNet [12] 0.67M N/A 29.72 27.68 26.42 N/A 28.43 26.35 25.09 N/A 29.10 26.65 25.01
IRCNN [42] 0.12M 34.76 29.53 27.45 N/A 33.74 28.26 26.15 N/A 34.60 28.85 26.24 N/A
FFDNet [6] N/A 34.81 29.70 27.63 26.34 33.76 28.39 26.29 25.04 34.45 29.03 26.52 24.86
A-CubeNet [15] 1.37M 35.06 29.84 27.77 26.44 33.94 28.50 26.37 25.10 N/A N/A N/A N/A
JSNet (Ours) 0.79M 35.04 29.80 27.69 26.39 33.93 28.48 26.35 25.05 35.17 29.58 26.95 25.21

Table 10
Gray image denoising performance of three NAS-based methods on BSD200.
BSD200
Methods Parameters o =30 o =50 o =70
E-CAE [30] 1.05M 28.23 26.17 24.83
CLEARER [29] 6.31M 28.54 26.40 25.06
JSNet (Ours) 0.79M 28.64 26.43 25.06

so it is reasonable to perform pretty well on this dataset. Visual
results of various methods under noise level & = 50 are shown
in Fig. 8. Compared with other methods, our method not only re-
moves noise well but keeps texture structure as much as possible.

To further prove the superiority of JSNet, we also compare our
method with recent NAS-based denoising methods E-CAE [30] and
CLEARER [29], with the quantitative results on the BSD200 dataset
shown in Table 10. We can see that compared with E-CAE, our
method obtains better performance in all noise levels. Compared
with CLEARER, we achieve competitive results, and simultaneously,

the number of trainable parameters of our method is much lower
than it.

4.4.4. JPEG image deblocking

We also apply our JSNet to reduce JPEG image deblocking. For
a fair comparisons, we perform training and evaluation both on Y
channel of YCbCr color space. We compare our method with SA-
DCT [53], ARCNN [7], TNRD [51], DnCNN [52], and A-CubeNet [15].
As shown in Table 11, our JSNet achieves the second-best results
with all JPEG quality settings under the evaluation of both PSNR
and SSIM, and our method presents an attractive performance with
fewer parameters. We also show visual results under very low JPEG
quality (q = 10). As shown in Fig. 9, our method not only re-
moves artifacts but also preserves more details. The superiority of
our method benefits from the fact that the proposed JSNet inte-
grates various attention features from spatial-wise, channel-wise,
and pixel dimensions to improve the representational capability of
models.
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Table 11
Quantitative results about JPEG image deblocking on LIVE1 and Classic5 datasets.
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Dataset q  JPEG SA-DCT [53] ARCNN [7] TNRD [51] DnCNN [52] A-CubeNet [15] JSNet (Ours)
PSNR  SSIM PSNR  SSIM PSNR  SSIM PSNR  SSIM PSNR  SSIM PSNR  SSIM PSNR  SSIM
LIVE1 10 2777 07905 2865  0.8093 2898 08217 2915 08111 2919 08123 2954 08216 2949  0.8206
20 3007 08683 3081 08781 3129 08871 3146 08769 3159 08802 3193  0.8859 31.88  0.8853
30 3141 09000 3208 09078 3269 09166 3284 09059 3298 09090 3335 09136 3331 09130
40 3235 09173 3299 09240 3363 09306 N/A N/A 3396 09247 3436 09289 3433 09284
Classics 10  27.82 07800  28.88  0.8071  29.04 08111 2928 07992  29.40  0.8026 29.84 08147 2974  0.8128
20 3012 08541 3092 08663 31.16 0.8694 3147 08576 31.63 08610 32.04 0.8677 3194  0.8663
30 3148 08844 3214 08914 3252  0.8967 3278  0.8837 3291 08861 3330 0.8919 3325  0.8910
40 3243 09011 3300 09055 3334 09101 N/A N/A 3377 09003 3416 09048 3395  0.9030
Parameters N/A N/A 0.12M N/A 0.56M 1.37M 0.67M

womanhat from LIVE1

GT JPEG (q=10)

é

ﬁ

DnCNN ARCNN TNRD OASN (Ours)
DnCNN ARCNN TNRD OASN (Ours)

Fig. 9. Visual comparison of JPEG image deblocking of various methods with JPEG quality q = 10.

5. Conclusions

In this paper, we propose a joint operation and attention block
search algorithm that aims to exploit the potential of multiple
connections from the pre-defined operation blocks and attention
blocks. The operation search module (OSM) and attention search
module (ASM) are found by employing differentiable architecture
search strategies. Then, we combine OSM with ASM to build the
joint search module (JSM) and stack them to build the overall ar-
chitecture. In addition, an effective cross-scale fusion module is
also developed to enhance multi-scale features while reducing the
number of parameters in the reconstruction process. Many exper-
imental results demonstrate the proposed new method is able to
achieve better performance compared with state-of-the-art meth-
ods for image super-resolution, gray image denoising, and JPEG im-
age deblocking.

Although the proposed method achieves superior performance
for lightweight image restoration tasks. In the future, there are
still some works worth exploring. Firstly, the proposed method
only constructs the cell-level search space to save search time.
We can construct the cell-level and network-cell search space
jointly to pursue better performance. Secondly, the JSNet may
further benefit from adversarial training, which can help to al-
leviate over-smoothing artifacts and produce more detailed fea-
tures. Thirdly, this paper mainly solves lightweight image restora-
tion tasks. However, it is well known the performance gap be-
tween deep networks and lightweight networks still exists. There-
fore, we can employ attention-based search space into some rep-
resentative building blocks to pursue better performance. Fourthly,
we believe that the proposed search algorithm can be further ap-
plied to other image restoration tasks, such as image derain and
dehazing.
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