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ABSTRACT
Multi-stage architectures have exhibited efficacy in image dehazing,
which usually decomposes a challenging task into multiple more
tractable sub-tasks and progressively estimates latent hazy-free
images. Despite the remarkable progress, existing methods still
suffer from the following shortcomings: (1) limited exploration of
frequency domain information; (2) insufficient information inter-
action; (3) severe feature redundancy. To remedy these issues, we
propose a novel Mutual Information-driven Triple interaction Net-
work (MITNet) based on spatial-frequency dual domain information
and two-stage architecture. To be specific, the first stage, named
amplitude-guided haze removal, aims to recover the amplitude spec-
trum of the hazy images for haze removal. And the second stage,
named phase-guided structure refined, devotes to learning the trans-
formation and refinement of the phase spectrum. To facilitate the
information exchange between two stages, an Adaptive Triple In-
teraction Module (ATIM) is developed to simultaneously aggregate
cross-domain, cross-scale, and cross-stage features, where the fused
features are further used to generate content-adaptive dynamic fil-
ters so that applying them to enhance global context representation.
In addition, we impose the mutual information minimization con-
straint on paired scale encoder and decoder features from both
stages. Such an operation can effectively reduce information redun-
dancy and enhance cross-stage feature complementarity. Extensive
experiments on multiple public datasets exhibit that our MITNet
performs superior performance with lower model complexity. The
code and models are available at https://github.com/it-hao/MITNet.
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1 INTRODUCTION
Hazy images usually cause the degradation of visual quality [16,
43] in object appearance, contrast, and color distortion, leading to
significant performance drops in subsequent high-level vision tasks
such as scene understanding [38], semantic segmentation [36], and
object detection [29]. Since these tasks urgently require clean haze-
free images, academic and industry communities, thereby, have
focused on single image dehazing, which attempts to extract latent
clean images from hazy ones.

Benefit from the important breakthrough of deep learning in com-
puter vision tasks [26, 44, 45, 48, 52, 56], data-driven image restora-
tion [10, 11, 60, 61] and image dehazingmethods [9, 12, 14, 17, 33, 47,
50, 54] have achieved superior performance. For the image dehazing
task, one can divide these methods into two categories: physics-free
methods and physics-aware methods. The former first calculates
the transmission map and atmospheric light independently before
employing the atmospheric scattering model (ASM) [31] to pro-
duce haze-free images. The latter tries to explore a mapping from
hazy images to clean counterparts directly in an end-to-end man-
ner. Among them, multi-stage architectures [8, 35, 54, 55] play a
significant role in performance improvement. The basic idea is to
decompose a challenging task into multiple easy sub-tasks and
adopt progressive learning. Despite the remarkable advancement,
there still exist some issues.

(1) Limited exploration of frequency domain information.
Most existing image dehazing methods [8, 35, 53, 55] focus exclu-
sively on exploiting spatial features but fail to sufficiently leverage
frequency discrepancies, such as the intrinsic prior of the physical
properties of hazy images, thus limiting performance gains. As
revealed in [54], the degraded haze information is almost displayed
in the amplitude component, while the disparity between phase
components of the corresponding hazy and clean images is small.
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Figure 1: The feature comparisons before and after applying
mutual information constraint (MIC).

Given this discovery, how to embed frequency domain prior infor-
mation into spatial features and effectively incorporate them into a
unified dehazing network is an open issue.

(2) Insufficient information interaction. Current multi-stage
architectures mainly consist of “early fusion” and “cross-stage fu-
sion” designs. The first category [35] attempts to directly fuse the
previous stage’s output and the current stage’s input at the begin-
ning layer, which ignores the propagation of intermediate features
from earlier to later stages. Thus, the complementary information
will be gradually weakenedwith the increasing network depths. The
second category [8, 54] fully integrates the contextually-enriched
features from one stage to the next, easing the information loss
caused by the encoder-decoder’s repetitive up- and down-sampling
operations. However, the fusion scheme only considers the inter-
action between paired scale features of two stages, ignores the
exchange of cross-scale information of in-stage and cross-stage,
and thereby fails to provide more precise and contextually enriched
feature representations. Besides, recent research [22, 27, 41, 59]
indicates the function of neurons should be modified adaptively in
response to behavioral context. Thereby, it is vital to modify the
convolution operation based on context information dynamically.

(3) Severe feature redundancy. Although performance can be
improved by effective fusion strategies, existing dehazing methods
do not explicitly enforce complementary information learning be-
tween different stage features, resulting in redundant features. We
can observe from Figure 1 (a) that the learned features from the two
stages have similar textures without any constraints. Conversely,
information redundancy is reduced after endowing the mutual in-
formation constraint for two-stage features, as shown in Figure 1
(b). Thus, it is desirable to enforce complementary feature learning
by adopting explicit constrain.

In this work, firstly, a simple yet effective two-stage network
is designed by simultaneously processing the spatial-frequency
dual domain information. The first stage is designed to recover
the amplitude spectrum of the hazy images for haze removal, and
the second stage learns the transformation and refinement of the

phase spectrum. To implement the network, we combine spatial-
frequency information to construct the customized feature extrac-
tion block, e.g., residual amplitude block for the first stage and
residual phase block for the second stage, respectively. Secondly,
we propose an adaptive triple interactionmodule (ATIM) to enhance
information exchange. Specifically, we design a triple interaction so-
lution to achieve cross-domain, cross-scale, and cross-stage feature
integration, and then an adaptive dynamic filter block is devel-
oped to generate dynamic filters based on the fused features. The
produced filters next are convolved with the decoder features of
the second stage for representation capability enhancement. Since
the generated filters are conditioned on the input features guided
by Fourier prior and spatial information, the network can flexibly
adapt to image contents. After being equipped with the two-stage
architecture and the proposed ATIM, diverse frequency domain in-
formation, and rich spatial contextual information are exploited. To
learn complementary information and alleviate feature redundancy
from two stages, we introduce themutual informationminimization
constraints on paired scale encoder and decoder features from two
stages. Overall, the main contributions of this paper can conclude
as follows:
(1) We propose a novel dehazing network termedMITNet, based on

spatial-frequency dual domain information and two-stage archi-
tecture, which simplifies the challenging dehazing problem into
two more manageable sub-tasks and embraces the advantages
of high performance and lower model complexity.

(2) We design an adaptive triple interaction module (ATIM) capable
of aggregating cross-domain, cross-scale, and cross-stage fea-
tures and generating content-adaptive filters to enhance global
context representation.

(3) We introduce the mutual information minimization constraint
on the paired scale encoder and decoder features from two
stages to reduce information redundancy and enhance cross-
stage feature complementarity.

(4) Comprehensive experiments on several public benchmarks
verify the superiority and strong generalization. Further, our
method achieves an excellent model complexity versus perfor-
mance trade-off.

2 RELATEDWORK
2.1 Single Image Dehazing
Existing single image dehazing methods can be classified into prior-
based and data-driven deep learning methods. The former [4, 7,
15, 18, 57, 66, 67] usually rely on the ASM or handcraft priors.
However, these priors only work well in the scene that satisfies
their assumptions.

With the introduction of sizeable hazy datasets [25, 30], a plethora
of data-driven approaches have been proposed rapidly in the past
years. Early methods [6, 24] usually design a network to estimate
the transmission map and atmospheric light. However, inaccurate
prediction for the atmospheric light and transmission map may
lead to performance degradation. Recent research [14, 17, 28, 33–
35, 50, 51, 54] has concentrated on recovering the clean image
directly from the hazy image without the need for a physical model.
GFN [35] proposes a revolutionary fusion-based strategy for gener-
ating haze-free images. FFA-Net [33] introduces a channel attention
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Figure 2: The detailed architecture of our Mutual Information-driven Triple interaction Network.

and pixel attention mechanism for constructing a feature attention
block that can handle many forms of input. MSBDN [14] utilizes
boosting and error feedback mechanisms to enhance the feature
fusion. AECR-Net [50] exploits negative and positive image infor-
mation via contrastive learning, achieving great network parame-
ters versus performance trade-offs. Dehamer [17] combines CNN
and Transformer to fuse local representation and global context
modelling capability perfectly to achieve haze removal. However,
these methods only utilize the spatial domain features but fail to
take advantage of the frequency domain information. FSDGN [54]
uses spatial-frequency information to achieve fast inference speed
but fails to achieve the complementarity of cross-stage features.

In addition, current mainstream image restoration methods, in-
cluding image dehazing [54], image denoising [41], image inpaint-
ing [63, 64], and image deblurring [62] adopt U-Net [37] architecture
to pursue the model’s efficiency. However, these methods neglect
the interaction of cross-scale features. In contrast, full-resolution
methods [33, 40] can obtain fine-grained features but fail to exploit
contextual information. This paper inherits the benefits of U-Net
and full-resolution architectures to develop a two-stage network.

2.2 Mutual Information Learning
Mutual information has deep connections with representation learn-
ing [3], aiming to capture the most important features similar to
the input ideally. By extracting global features from the full image
and local features from image patches, DIM [19] estimates and max-
imizes mutual information. CPC [32] enables mutual information
maximization between the context and features extracted from dif-
ferent sequential data components. CMC [46] employs contrastive
learning in a multiview context, seeking to maximize mutual infor-
mation across representations of different views of the same scene.
Based on the empirical of multiview features, Info3d [39] enables
mutual information maximization between 3D objects and the cor-
responding geometric converted equivalents based on empirical
multiview features to improve representations. CMINet [58] specif-
ically uses multi-modal features in color images and depth data
through mutual information learning, removing redundant features

for effective multi-modal learning. To learn mutual information
on diverse image modalities, [65] implements mutual information
minimization across PAN and MS features. Our proposed two-stage
network explores different frequency domain characteristics in each
stage and extracts rich spatial contextual features in both stages.
Thus, common and diverse features exist in separate stages. To this
end, we also apply mutual information as a constraint to alleviate
the feature redundancy.

3 METHODS
3.1 Network Architecture
It is well known that the degradation information in low-quality
images predominantly displays in the amplitude spectrum. Thus,
we utilize the insight wisely and disentangle the dehazing procedure
into a two-stage process so as to achieve haze degradation removal
and preserve image structure information. Next, we will go through
the operation and properties of the Fourier transformation.

For a image 𝑋𝑖𝑚𝑔 ∈ 𝑅𝐻×𝑊 ×1 with single channel, its Fourier
transformation operation [54] F can be expressed as:

F (𝑋𝑖𝑚𝑔) (𝑖, 𝑗) =
1

√
𝐻𝑊

𝐻−1∑︁
ℎ=0

𝑊 −1∑︁
𝑤=0

𝑋𝑖𝑚𝑔 (ℎ,𝑤)𝑒−𝑘2𝜋
(
ℎ
𝐻
𝑖+ 𝑤

𝑊
𝑗

)
. (1)

Accordingly, F −1 is the inverse Fourier transformation, 𝑘 repre-
sents the imaginary unit, 𝑖 and 𝑗 denote the horizontal and verti-
cal coordinates. Following with FFT algorithm [5], the amplitude
A(𝑋𝑖𝑚𝑔) and phase P(𝑋𝑖𝑚𝑔) information can be defined as:

A(𝑋𝑖𝑚𝑔) (𝑖, 𝑗)) =
√︃
𝑅𝑒𝑎𝑙2 (𝑋𝑖𝑚𝑔) (𝑖, 𝑗) + 𝐼𝑚𝑎𝑔2 (𝑋𝑖𝑚𝑔) (𝑖, 𝑗),

P(𝑋𝑖𝑚𝑔) (𝑖, 𝑗)) = arctan
[
𝐼𝑚𝑎𝑔(𝑋𝑖𝑚𝑔) (𝑖, 𝑗)
𝑅𝑒𝑎𝑙 (𝑋𝑖𝑚𝑔) (𝑖, 𝑗)

]
,

(2)

where 𝐼𝑚𝑎𝑔(𝑋𝑖𝑚𝑔) and 𝑅𝑒𝑎𝑙 (𝑋𝑖𝑚𝑔) denote the imaginary and real
component of F (𝑋𝑖𝑚𝑔). Here, it is worth emphasizing that the
Fourier operation is computed alone in each channel for feature
maps or color images.
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Figure 3: The detailed architecture of (a) residual amplitude/phase block and (b) adaptive triple interaction module.

The entire network, as shown in Figure 2, contains an amplitude-
guided haze removal stage and a phase-guided structure re-
fined stage. The former restores the amplitude of hazy images to
remove haze, and the latter restores the phase information to re-
fine fine-grained background structures. Let 𝑋ℎ𝑎𝑧𝑦 and 𝑋𝑔𝑡 denote
hazy and ground truth images, 𝑌1 and 𝑌2 represent the outputs
of two stages. Since each stage is designed by a task-specific sub-
network, both the input and supervision signals should be differ-
ent. For the first stage, the hazy images 𝑋ℎ𝑎𝑧𝑦 are served as input,
F −1 (A(𝑋𝑔𝑡 ),P(𝑋ℎ𝑎𝑧𝑦)) and A(𝑋𝑔𝑡 ) are used to supervise the
learning of amplitude representation. For the second stage, the 𝑋𝑔𝑡
are used as the supervision signal, but we do not directly use 𝑌1 as
the input of the second stage. Instead, we useF −1 (A(𝑌1),P(𝑋ℎ𝑎𝑧𝑦))
to ensure the retention of original phase information.

To achieve an efficient target, we use encoder-decoder-like (or
U-Net-like) [37] design for each stage, consisting of seven basic
units ( e.g., residual amplitude block (RAB) and residual phase
block (RPB)), three downsampling blocks, and three upsampling
blocks in each stage. In the first stage, except for the lowest scale,
each scale contains a skip connection between the encoder and
decoder. However, considering that the decoder of the second stage
integrates features from the previous stage and the current encoder
by adopting the proposed fusion module, we do not take a similar
approach. In addition, we introduce a supervised attention module
(SAM) [55] to stabilize the optimization procedure.

We show the structure of RAB and RPB in Figure 3 (a). Taking the
former as an instance, which has a spatial domain branch and a fre-
quency domain branch for processing dual domain representations.
The spatial domain branch employs a residual block with two 3 × 3
convolutional layers to process spatial information. After obtaining
the spatial features 𝐹𝑠𝑝𝑎 , we firstly utilize the fast Fourier transfor-
mation (FFT) to obtain the amplitude spectrum A(𝐹𝑠𝑝𝑎) and phase
spectrum P(𝐹𝑠𝑝𝑎) information. Then, the A(𝐹𝑠𝑝𝑎) is fed into two
1 × 1 convolutional layers to obtain A′ (𝐹𝑠𝑝𝑎). Subsequently, we
use the inverse FFT (IFFT) algorithm to mapA′ (𝐹𝑠𝑝𝑎) and P(𝐹𝑠𝑝𝑎)
back to their image space and obtain the frequency features 𝐹𝑓 𝑟𝑒 .

Finally, we adopt channel-wise concatenation followed with one
1 × 1 convolution to fully integrate the cross-domain features 𝐹𝑠𝑝𝑎
and 𝐹𝑓 𝑟𝑒 . The RPB is similar to RAB, just swapping the operations
between A and P.

3.2 Adaptive Triple Interaction Module
The information exchange is an important ingredient in the two-
stage design because simply passing the previous stage’s output to
the next stage neglects the potential intermediate features, but the
original, useful shallow features will be gradually weakened with
the increasing network depths. In our framework, we construct the
ATIM to associate two stages by adequately incorporating cross-
domain, cross-scale, and cross-stage features.

As for the cross-domain interaction, the proposed RAB and
RPB employed in two stages fully utilize the spatial and frequency
domain information to reconstruct the representation of low-frequency
(contrast, illumination, and color) and structural components.

As for the cross-scale interaction, in the first stage’s decoder
and second stage’s encoder, the ATIM integrates information from
all scales, allowing for both top-down and bottom-up information
flow. Further, this procedure combines features with different recep-
tive fields, which enriches contextual representations. As shown
in Figure 3 (b), the features

{
𝐷𝑠𝑖
1
}3
𝑖=1 in the decoder of the first

stage firstly will be extracted by three independent 3 × 3 convo-
lutions. Upsampling and downsampling operations will further
resize the obtained resolution features. To achieve the combination
of precisely spatial high-resolution features with low-resolution
features containing rich contextual information, a simple channel
concatenation operation followed by 1 × 1 convolution is used to
fuse them. The resultant multi-scale features can be denoted as{
𝐷𝑠𝑖
1
}3
𝑖=1. Similarly, one can obtain the fused features

{
𝐸𝑠𝑖2

}3
𝑖=1 in

the encoder of the second stage.
As for the cross-stage interaction, the ATIM is equipped with

an adaptive dynamic filter block (ADFB), which generates weight
filters with flexibility based on the fused cross-domain and cross-
scale features and applies them to the decoder’s features of the

10
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second stage for representation capability enhancement. Taking the
specific-scale feature set

{
𝐷𝑠1
1 , 𝐸

𝑠1
2 , 𝐷

𝑠1
2
}
∈ 𝑅𝑐×ℎ×𝑤 as an example.

The ADFB first uses one 1 × 1 convolution to fuse three inputs and
then embeds resulting features into lightweight spatial and channel
context branches to enhance filter representations. The spatial con-
text branch includes a 3 × 3 depthwise convolution [21], whereas
the channel context branch consists of a pooling layer and a con-
volutional layer. To take full advantage of them, the element-wise
addition operation is used to integrate them. In order to formulate
spatially-varying filters, a 1 × 1 convolutional layer is utilized to
produce feature maps whose dimension is (𝑘 × 𝑘 × 𝑐) × ℎ ×𝑤 ; we
then reshape them into a series of per-pixel kernels𝑊𝑖, 𝑗 ∈ R𝑘

2×𝑐 ,
where 𝑖 ∈ {1, 2, · · · , ℎ}, 𝑗 ∈ {1, 2, · · · ,𝑤}. In this way, a series of
content-adaptive filters for each location is learned. Finally, given
the scale-specific features 𝐷𝑠1

2 , the dynamic filter results can be
written as:

𝐷𝑠1
2 = 𝐷𝑠1

2 ∗𝑊 + 𝐷𝑠1
2 , (3)

where “∗” indicates the convolution operation, 𝐷𝑠1
2 is the enhanced

features in the decoder of the second stage. Here, we adopt residual
learning to preserve more low-level features.

Here, we mainly emphasize two points. (1) The generated filters
of ADFB are conditioned on the triple interaction features, thus
being guided by the enriched spatial-frequency features (cross-
domain), multi-scale contextual features (cross-scale), and deep-
shallow features (cross-stage). Such a mechanism allows the ADFB
to adapt flexibly to image contents. (2) The two stages explore
different frequency domain characteristics and extract rich spatial
contextual features, so redundant features still exist.

3.3 Mutual Information Constraint
Given the multi-scale features

{
𝐷𝑠𝑖
1
}3
𝑖=1 from the first stage’s de-

coder and
{
𝐸𝑠𝑖2

}3
𝑖=1 from the second stage’s encoder, the first step

is to transform them into low-dimensional feature vectors for fea-
ture embedding. In detail, the paired features of the same scale are
inputted into two 3 × 3 convolutional layers. Then the obtained
features are mapped using two fully connected layers (“FC” in Fig-
ure 2) to produce a low-dimensional feature vector set

{
𝑣𝑠𝑖
𝑑

}3
𝑖=1 and{

𝑣𝑠𝑖𝑒
}3
𝑖=1. After obtaining the embedded vectors 𝑣𝑑 and 𝑣𝑒 , the next

step is to introduce the mutual information minimization constraint
to mitigate feature redundancy and achieve the complementary
learning of diverse features.

According to the information theory [23], the mutual informa-
tion between 𝑣𝑑 and 𝑣𝑒 , with the joint entropy 𝐺 (𝑣𝑑 |𝑣𝑒 ), and mar-
ginal entropies 𝐺 (𝑣𝑑 ) and 𝐺 (𝑣𝑒 ), can be expressed as:

𝐼 (𝑣𝑑 , 𝑣𝑒 ) = 𝐺 (𝑣𝑑 ) +𝐺 (𝑣𝑒 ) −𝐺 (𝑣𝑑 |𝑣𝑒 ) . (4)

Formally, following [39], the representation of KL divergence of
these two variables is also given as:

𝐾 (𝑣𝑑 ∥𝑣𝑒 ) = 𝐺𝑣𝑒 (𝑣𝑑 ) −𝐺 (𝑣𝑑 ) ,
𝐾 (𝑣𝑒 ∥𝑧𝑑 ) = 𝐺𝑣𝑑 (𝑣𝑒 ) −𝐺 (𝑣𝑒 ) ,

(5)

where 𝐺𝑣𝑒 (𝑣𝑑 ) and 𝐺𝑣𝑑 (𝑣𝑒 ) represent the cross-entropy. Thereby,
combining Eq. 4 and Eq. 5, we can obtain:

𝐼 (𝑣𝑑 , 𝑣𝑒 ) =𝐺𝑣𝑑 (𝑣𝑒 ) +𝐺𝑣𝑒 (𝑣𝑑 ) −𝐺 (𝑣𝑑 |𝑣𝑒 )
− 𝐾 (𝑣𝑑 ∥𝑣𝑒 ) − 𝐾 (𝑣𝑒 ∥𝑣𝑑 ) .

(6)

Due to the non-negative property of𝐺 (𝑣𝑑 |𝑣𝑒 ), minimizing the mu-
tual information is equivalent to optimizing the following formula:

𝐿𝑚𝑖 = 𝐺𝑣𝑑 (𝑣𝑒 ) +𝐺𝑣𝑒 (𝑣𝑑 ) − 𝐾 (𝑣𝑑 ∥𝑣𝑒 ) − 𝐾 (𝑣𝑒 ∥𝑣𝑑 ) . (7)

To enforce themutual information constraint on paired scale-specific
features, we use a multi-scale joint learning manner. By minimizing
𝐼 (𝑣𝑒 , 𝑣𝑑 ), one can explore the complementary characteristics of two
stages effectively. Additionally, the MIC is only used in the training
phase and thus does not affect the model’s efficiency.

3.4 Loss Function
Since there are two outputs, 𝑌1 and 𝑌2, from our two-stage network,
then the loss function 𝐿1 and 𝐿2 for both stages is:

𝐿1 =


𝑌1 − F −1 (A(𝑋𝑔𝑡 ),P(𝑋ℎ𝑎𝑧𝑦))




1︸                                       ︷︷                                       ︸

𝑠𝑝𝑎𝑡𝑖𝑎𝑙

+𝛼


A (𝑌1) − A

(
𝑋𝑔𝑡

)


1︸                     ︷︷                     ︸

𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

,

(8)
𝐿2 =



𝑌2 − 𝑋𝑔𝑡 

1︸        ︷︷        ︸
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

+𝛽


F (𝑌2) − F

(
𝑋𝑔𝑡

)


1︸                     ︷︷                     ︸

𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

. (9)

Both terms in each equation above are performed on spatial and
frequency domains, respectively. ∥·∥ denotes the Mean Absolute
Error (MAE), 𝛼 and 𝛽 are the trade-off factor, and we set them
as 0.05. As a consequence, the overall loss after combining with
mutual information minimization loss is:

𝐿 = 𝐿1 + 𝐿2 + 𝛾
3∑︁

𝑖=1
𝐿𝑚𝑖

(
𝑣𝑠𝑖
𝑑
, 𝑣𝑠𝑖𝑒

)
. (10)

As the 𝐿𝑚𝑖 is much larger than other terms, we empirically set the
weight 𝛾 = 0.001 for balanced learning.

4 EXPERIMENTS
We will first describe the experimental setup in this section. Then,
experimental results and a detailed ablation analysis of our pro-
posed methods will be illustrated.

4.1 Experiment Setting
Datasets. For fair comparisons with existing dehazing methods,
we utilize ITS and OTS subsets of RESIDE [25] dataset as the train-
ing data and evaluate performance on SOTS subset for synthetic
image dehazing. For real image dehazing, two common real-world
datasets, Dense-Haze [1] and NH-Haze [2], are adopted to test
the robustness of our MITNet. It should be emphasized that we
execute all evaluations on these datasets separately and do not use
extra data to boost results.
Implementation Details. From the first to the fourth scale, the
encoder and decoder have 20, 40, 80, and 160 channels, respectively.
The upsampling and downsampling layers are implemented by
transposed and strided convolution, respectively. Our model is
implemented using the PyTorch library on two NVIDIA GeForce
GTX 2080Ti GPUs. ADAM optimizer with 𝛽1 = 0.9, 𝛽2 = 0.999,
𝜖 = 10−8 is used in the whole training phase. We set the initial
learning rate as 0.0002 and then linearly decrease it to half every 200
epoch. In addition, 16 patches of size 256×256 are cropped randomly
as input images for each training. And in eachmini-batch, we enrich
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(a) Hazy (b) DCP [18] (c) FFA-Net [33] (d) AECR-Net [50] (e) Dehamer [17] (f) MITNet (Ours) (g) GT

Figure 4: Visual comparisons of SOTS [25] dataset by different methods.

and augment these patches to expand training samples by flipping
horizontally or vertically and rotating 90◦.
Comparison Methods and Evaluation Metrics. We compare
our MITNet with four earlier method including DCP [18], De-
hazeNet [6], AOD-Net [24], GFN [35] and eight recent competing
methods including FFA-Net [33], MSBDN [14], AECR-Net [50],
UDN [20], PMDNet [53], Dehamer [17], MAXIM [47], and FS-
DGN [54]. Additionally, all of the compared results are provided
by the authors or retrained by their available codes(e.g., the real-
world dehazing results on FSDGN [54]). Note that (1) we do not
compare recent methods (e.g., DehazeFormer [42] and SFNet[13])
with very high computational cost and network parameters; (2)
AECR-Net [50] uses the last five images in the real-world training
set for evaluation, leading to the reported results being inconsistent
with the testing set; we utilize their provided pre-trained models to
obtain the results on two testing sets. In addition, Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index (SSIM) [49] are
utilized for dehazing performance evaluation.

4.2 Comparison with State-of-the-art Methods
In this subsection, the results of several compared methods with
ours on synthetic and real-world dehazing datasets are provided.

Evaluation on Synthetic Dataset. The quantitative evalua-
tion of our approach and other methods on the SOTS dataset are
listed in Table 1. As observed, our MITNet acquires the highest
PSNR on the SOTS-indoor dataset, the second highest PSNR on
the SOTS-outdoor dataset, and outperforms all other methods on
the SSIM index. Specifically, compared to the Transformer-based
method Dehamer and spatial-frequency guided method FSDGN,
we achieve performance gains by 3.6 dB and 1.6 dB on the SOTS-
indoor dataset. Although there is no performance improvement on
the SOTS-outdoor compared to Dehamer [17], our method is more
lightweight and efficient. We also show the visualized comparisons
with representative methods on the SOTS dataset in Figure 4, from
which we can see that the comparedmethods retain haze or produce
color deviations. In contrast, our method preserves more details
and involves fewer color distortions, resulting in the closest match
to the original clean images and accurate haze removal.

Evaluation on Real-world Datasets.We also perform the eval-
uation on real-world datasets (e.g., the Dense-Haze and NH-Haze)
and present the quantitative results in Table 2. We all know that
removing haze from real-world photographs is significantly more

Table 1: Quantitative comparisons of various dehazing meth-
ods on SOTS (indoor and outdoor) [25].

SOTS-indoor SOTS-outdoorMethod Venue PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DCP [18] TPAMI’10 16.61 0.8546 19.14 0.8605
DehazeNet [6] TIP’16 19.82 0.8209 27.75 0.9269
AOD-Net [24] ICCV’17 20.51 0.8162 24.14 0.9198
GFN [35] CVPR’18 22.30 0.8800 21.55 0.8444
FFA-Net [33] AAAI’20 36.39 0.9886 33.57 0.9840
MSBDN [14] CVPR’20 32.77 0.9812 34.81 0.9857
AECR-Net [50] CVPR’21 37.17 0.9901 - -
UDN [20] AAAI’22 38.62 0.9909 34.92 0.9871
PMDNet [53] ECCV’22 38.41 0.9900 34.74 0.9850
Dehamer [17] CVPR’22 36.63 0.9881 35.18 0.9860
MAXIM-2S [47] CVPR’22 38.11 0.9908 34.19 0.9846
FSDGN [54] ECCV’22 38.63 0.9903 - -
MITNet (Ours) - 40.23 0.9920 35.18 0.9881

Table 2: Quantitative comparisons of various dehazing meth-
ods on Dense-Haze [1] and NH-HAZE [2].

Dense-Haze NH-HAZEMethod Venue PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DCP [18] TPAMI’10 10.06 0.3854 10.57 0.5196
DehazeNet [6] TIP’16 13.84 0.4252 16.62 0.5238
AOD-Net [24] ICCV’17 13.14 0.4144 15.40 0.5693
GDN [28] ICCV’19 13.31 0.3681 13.80 0.5370
FFA-Net [33] AAAI’20 14.39 0.4524 19.87 0.6915
MSBDN [33] CVPR’20 15.37 0.4858 19.23 0.7056
AECR-Net [50] CVPR’21 14.88 0.5049 19.92 0.6717
Dehamer [17] CVPR’22 16.62 0.5602 20.66 0.6844
FSDGN [54] ECCV’22 16.91 0.5806 19.99 0.7086
MITNet (Ours) - 16.97 0.6056 21.26 0.7122

challenging than removing haze from synthetic photographs due
to the dense and nonhomogeneous haze distribution. However, the
proposed MITNet surpasses all compared methods on both datasets.
The visually compared images are also presented in Figure 5. We
can see although other competitors successfully remove most of
the haze, their results lose the colorfulness of images. Our method
effectively removes the homogeneous or nonhomogeneous haze
and reconstructs vivid colors.
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(a) Hazy (b) AECR-Net [50] (c) Dehamer [17] (d) FSDGN [54] (e)MITNet (Ours) (f) GT

Figure 5: Visual comparisons of real-world image dehazing methods on Dense-Haze [1] and NH-Haze [2] datasets.
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Figure 6: Comparisons of model complexity of different methods. FLOPs are calculated with an input size of 256×256, and the
average inference time is evaluated on SOTS-indoor [25].

Table 3: Ablation study about the two-stage design and the
combination of spatial-frequency domain features.

Model 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6

#Parmas(M) 2.08 2.22 2.22 2.39 2.39 2.39
PSNR(dB) 35.43 35.98 36.11 34.17 37.43 37.64
SSIM 0.9870 0.9890 0.9899 0.9863 0.9905 0.9908

4.3 Model Complexity Analyses
We further evaluate the model complexity (e.g., network parame-
ters, FLOPs, and inference time) of deep learning-based dehazing
approaches over the last three years. The average running time is
evaluated on the SOTS-indoor dataset, FLOPs are obtained based
on 256×256 resolution image patch, and each result is acquired by
repeating the experiment five times to guarantee a fair comparison.
From Figure 6, we can easily conclude that our MITNet obtains
the best performance with the fewest number of parameters, the
fewest FLOPs, and the second-fast inference time. Thus, ourMITNet
achieves an excellent model complexity versus performance trade-
off. FSDGN [54] utilizes dual-domain information while having a
noticeable performance gap with ours, which shows it is necessary
for adequate feature interaction and redundant feature removal.

4.4 Ablation Studies
Two-stage Architecture. Here, we design several variants of net-
works to validate the significance and effectiveness of the two-stage
architecture. All ablation studies are conducted without using the
proposed ATIM and MIC.𝑀1 denotes that the Fourier prior is not
used in both stages, that is, the overall process is performed on the

Table 4: Ablation investigation on the effectiveness of the
proposed ATIM and MIC.

Model Triple Interaction ADFB MIC #Params
(M)

PSNR
(dB) SSIM

𝑀𝑎 ✗ ✗ ✗ 2.39 37.64 0.9908
𝑀𝑏 ✓ ✗ ✗ 2.54 38.64 0.9913
𝑀𝑐 ✗ ✓ ✗ 2.49 38.81 0.9910
𝑀𝑑 ✓ ✓ ✗ 2.73 39.47 0.9916
𝑀𝑒 ✓ ✓ ✓ 2.73 40.23 0.9920

spatial domain.𝑀2 denotes that the RABs used in the first stage are
only performed in the spatial domain.𝑀3 denotes that RPBs used
in the second stage are only performed in the spatial domain.𝑀4
denotes exchanging the order of the first stage and the second stage.
𝑀5 denotes that the network architecture is consistent with our
MITNet, but uses 𝑌1 as the input of the second stage.𝑀6 denotes
the proposed MITNet without using the ATIM and MIC.

As shown in Table 3,𝑀4 presents the worse performance. In this
case, the inputs of these two stages contain amplitude spectrum
information, which means the whole process is trained on the de-
graded hazy images. Both𝑀2 and𝑀3 exceed the𝑀1, showing the
effectiveness of spatial-frequency dual domain information integra-
tion.𝑀6 achieves 0.21 dB PSNR gain compared to𝑀6, demonstrating
that keeping the P(𝑋ℎ𝑎𝑧𝑦) invariant is vital for the training of the
second stage. Simultaneously, this phenomenon reveals that the
first stage also utilizes the phase spectrum information to some
extent, which provides insight guidance for removing redundant
information using mutual information constraint.
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Figure 7: Visualization of the histograms of various images. (a) Input hazy images, (b) output of MITNet without mutual
information constraint (w/o MIC), (c) output of MITNet without adaptive triple interaction module (w/o ATIM), (d) output of
our MITNet, and (e) ground truth images.

Adaptive Triple Interaction Module. To verify the effective-
ness of the proposed ATIM, we ablate the use of components “Triple
Interaction” and ADFB. As shown in Table 4, one can see from the
top three rows that the proposed triple interaction manner and
ADFB significantly outperform the baseline with slightly increas-
ing parameters. Further, when these two modules are employed,
𝑀𝑑 achieves 1.77 dB performance gains in terms of PSNR, which
suggests utilizing the interactive cross-domain, cross-scale, and
cross-stage features to generate content-adaptive dynamic filters
and applying them to subsequent decoder features is beneficial for
improving representation capability.

Mutual Information Constraint. We also verify the proposed
MIC scheme and list the results in the last two rows of Table 4.
Because the MIC is only employed during the training phase, it has
no effect on inference speed or model parameters. It is clearly seen
that Model (e), the final MITNet, gets the only result over 40dB,
meaning that using MIC forces complementary feature learning.

Figure 7 shows the statistical distribution with or without using
the proposed modules. The first row is the histogram of the corre-
sponding ablated model’s output, representing the illumination and
color distribution. The histogram of the corresponding grayscale
images is shown in the second row, displaying the variation of
texture, light, and contrast. Our MITNet obviously produces a more
comparable distribution to the clean photographs. However, the re-
sults of “w/o ATIM” and “w/o MIC” (zoom in on the red circle) have
apparent discrepancies. We further show the difference of feature
maps in two stages before and after employing MIC and ATIM in
Figure 8. We can get some intuitive clues from the visualization. (1)
It is apparent that integrating MIC enhances the complementary
features learning and reduces the redundant features, thereby pro-
ducing different textures. (2) The ATIM utilizes the dual domain and
spatial-channel contextual information to guide the generation of
subsequent features. The resulting feature maps focus on informa-
tive structural contents and fine texture details. These experiments
indicate that both modules are the key ingredients of our method.

(a) w/o MIC (b) w/ MIC (c) w/o ATIM (d) w/ ATIM

Figure 8: The features difference between two stages in our
model without and with integrating the MIC and ATIM. The
first and second columns in (a) and (b) denote features ex-
tracted from the first and second stages, respectively.

5 CONCLUSION
In this paper, a two-stage network named MITNet is proposed for
image dehazing to address three issues. For the limited investiga-
tion of frequency domain information, we propose a two-stage
design to construct the network, which progressively restores the
haze-free images based on Fourier’s amplitude and phase spectrum
priors. For the inadequate information interaction, we propose an
adaptive triple interaction module to fully integrate cross-domain,
cross-scale, and cross-stage features, enhancing model representa-
tional capability. For the information redundancy, we utilize the
mutual information constraint to learn complementary informa-
tion and alleviate feature redundancy from two stages. Extensive
experiments confirm the validity and generality of our MITNet.
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