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Abstract— The feature modulation mechanism has been
demonstrated to be particularly well-suited for efficient network
design and is rarely explored in remote sensing dehazing tasks.
Moreover, we observe distinct patterns in haze distribution across
the low-frequency (LF) and high-frequency (HF) components of
haze images from various datasets. However, existing research
rarely investigated the potential solution in the frequency domain.
In response, we propose a novel spatial-frequency adaptive
network (SFAN), which is mainly built by the proposed mixture
of modulation experts (MoME) and decoupled frequency learning
block (DFLB). Different from the fixed feature modulation design
used in other tasks, the MoME adopts the mixture-of-expert
mechanism to dynamically learn diverse contextual features of
various granularities and scales in a sample-adaptive manner
and then utilize them to perform elementwise local feature
modulation. This pure convolution architecture enables our
network to have superior performance and efficiency tradeoffs.
Furthermore, the DFLB is devised to facilitate the LF global
haze removal and reconstruction of HF local texture information.
At the micro level, we first utilize a mask extractor (ME)
to generate the frequency mask from the input hazy image,
then employ a dual-branch decoupled learning unit to boost
frequency learning, and finally develop a mixture of fusion
experts (MoFE) to achieve HF and LF feature interaction.
Extensive experiments on publicly available dehazing datasets
demonstrate that our network performs superior performance
while incurring lower computational costs. Compared to the
state-of-the-art approach (DEA-Net), SFAN achieves, an average,
0.83-dB PSNR improvement on five remote sensing datasets but
consumes only 51% of the FLOPs. The code will be available at
https://github.com/it-hao/SFAN.

Index Terms— Decoupled frequency learning, image dehazing,
mixture of modulation experts (MoME).
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I. INTRODUCTION

IMAGES captured by remote sensing satellites often suffer
from absorption and scattering effects caused by haze and

thin clouds, ultimately leading to image degradation. The low
quality of these images cannot directly be used for subsequent
high-level computer vision tasks, such as object detection [1],
semantic segmentation [2], image captioning [3], and video
grounding [4], [5]. Therefore, developing an effective method
for removing haze and thin clouds from single remote sensing
images is crucial. Nonetheless, dehazing based on a single
image remains challenging due to the ill-posed property.

Over the past few years, many researchers have devoted
themselves to this task and proposed many algorithms, mainly
including prior-based and data-driven methods. The former is
primarily based on the atmospheric scattering model (ASM),
incorporating diverse prior assumptions, such as dark channel
prior (DCP) [6], haze lines [7], and dark-object subtraction [8],
into the network to learn jointly. However, prior-based tech-
niques often yield subpar dehazing outcomes when confronted
with dense and nonhomogeneous hazy environments. This is
due to the intricate nature of accurately estimating multiple
haze parameters using prior-based methods.

The data-driven methods leverage substantial amounts of
training data and powerful representation capabilities of neu-
ral networks to train models, thereby dominating remote
sensing image dehazing tasks. Earlier deep networks [13],
[14], [15] first leverage powerful feature representations to
estimate ambient light and medium transmission and then
utilize the ASM [16] to estimate hazy-free images. Recently,
more methods [10], [11], [17], [18], [19] tend to adopt an end-
to-end manner to produce hazy-free images. However, with the
excellent characterization capability of the vision Transformer
(ViT), more and more haze removal algorithms [11], [20], [21],
[22], [23] incorporate self-attention as the fundamental build-
ing block to design the network. For example, DeHamer [20]
utilized the Transformer features to modulate the convolutional
features, achieving feature consistency. DehazeFormer [22]
redesigned a critical structure of Swin Transformer [24] and
introduced the spatial information aggregation mechanism
for better both natural and remote sensing image dehazing.
MBTFormer [21] utilized the Taylor expansion and multi-
scale design to build a novel linearized Transformer network.
TrinityNet [11] wisely incorporated prior information into the
convolutional neural network (CNN) and Swin Transformer
for better estimating haze parameters. Despite the significant
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Fig. 1. From the top to bottom represents the hazy images (top), clear images (middle), and the Fourier spectra (bottom) of residual images obtained by
subtracting the hazy images from the clear images for different remote sensing datasets. For different datasets, haze affects LF and HF information in images
differently. Therefore, it is necessary to conduct adaptive learning for frequency features.

advancements achieved by these methodologies, an additional
challenge emerges from the stringent efficiency requirements.

More recently, modulation mechanisms [25], [26] show
that pure convolutional networks could also achieve supe-
rior performance and are computationally efficient compared
to Transformers. These methods usually employ a uniform
modulation framework across all layers. However, the scale
and structural information of the features change as the
network depth varies, and utilizing a single paradigm to
modulate features at each layer restricts the diversity of
learned features. Especially for remote sensing images from
large-area Earth observation scenarios and large-range imag-
ing, there exists scale diversity and channel redundancy of
features [27]. Therefore, using a single, monolithic model to
deal with the dehazing task is challenging. The mixture-of-
expert (MoE) [28] mechanism leverages expert knowledge of
various components to learn different aspects and adopts a
dynamic network to integrate them, enabling sample-adaptive
targets. By introducing the MoE mechanism into the feature
modulation scheme, we can achieve adaptive feature modula-
tion and enhance the network’s generalization capabilities.

In addition, recent studies [29], [30], [31], [32], [33]
have demonstrated the effectiveness of customized learn-
ing for frequency features. FMSR [30] devised an adap-
tive frequency-assisted Mamba for remote sensing image
super-resolution to grasp frequency feature dependencies.
FMRNet [32] designed a frequency mutual revision derain-
ing network to eliminate rain perturbation while preserving
background textures in frequency space. SFNet [33] combined
dynamic convolution with multibranch architecture to perform
decoupled learning of high-frequency (HF) and low-frequency
(LF) information for image restoration. Inspired by these
works, we also count the distribution of haze information in
the frequency domain on different remote sensing dehazing
datasets. As shown in Fig. 1, we observe that the haze
distribution in the low- and high-frequency components of
haze images from different datasets is different. For instance,
in the RICE [9], DHID, and LHID [10] datasets, haze degra-
dation primarily affects low-frequency information of images,
whereas, in the RSID [11] and StateHaze1K [12] datasets,

both low- and high-frequency information is contaminated by
haze. Therefore, it is necessary to conduct in-depth research
on the frequency characteristics and further deal with HF and
LF features in a targeted manner to reduce learning difficulty
and achieve effective decoupled learning.

We attempt to tackle the remote sensing image dehazing
task by incorporating the spatial and frequency domains
and propose a spatial-frequency adaptive network (SFAN).
To adaptively model the contextual relationships while remov-
ing haze from the hazy images, we delicately develop two
core designs: modulation expert block (MEB) in the spa-
tial domain and decoupled frequency learning block (DFLB)
in the spatial-frequency domain. Specifically, we devise a
mixture of modulation experts (MoME) as the fundamental
component within the MEB to adaptively select the most
suitable cross-spatial or cross-channel modulation experts and
explicitly achieve contextual feature modeling. Each mod-
ulation expert employs elementwise operations to enhance
high-dimensional feature interaction, thereby improving infor-
mation transformation. The DFLB is composed of a mask
extractor (ME), a decoupled learning unit, and a mixture
of fusion experts (MoFE). First, the ME is responsible for
generating frequency masks that partition the image into
high-frequency and LF parts. Second, the decoupled learning
unit adopts a dual-branch structure to facilitate the independent
learning of low- and high-frequency features with deep hierar-
chical features using cross-attention (CA), enabling effective
haze removal and reconstruction of delicate texture details.
Finally, the MoFE is responsible for the adaptive interaction
of HF and LF features. With the aid of the proposed core
components, our method can effectively promote haze removal
and present better generalization. Our contributions can be
summarized as follows.

1) We devise an SFAN from the perspective of the
spatial-frequency domain to tackle the remote sensing
image dehazing task. Comprehensive experiments verify
that our SFAN achieves superior performance on ten
public dehazing datasets while being highly efficient.

2) An MEB is customized to adaptively aggregate contex-
tual information, which adopts a dynamic structure to
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extract diverse features. This is a significant attempt to
introduce MoE in the remote sensing image dehazing
task.

3) A DFLB is developed to facilitate haze removal and
enhance high-frequency information reconstruction.

II. RELATED WORKS

A. Prior-Based Image Dehazing

Such methods typically use manual priors to remove haze
from empirical observations. As for the NSI dehazing task,
He et al. [6] first proposed the DCP with the haze imaging
model to directly estimate haze-free images. Immediately
afterward, Zhu et al. [34] utilized a linear model to build
the scene depth of haze images based on color attenuation
priors, further achieving the haze removal by the obtained
depth information. Berman et al. [35] proposed a nonlocal
dehazing method since the pixels observed in a given cluster
are distributed across the entire image and located at dif-
ferent distances from the camera. For RSI tasks, Li et al.
[36] proposed a homomorphic filtering and sphere model to
improve DCP based on the observation that haze is mainly
located in the LF component of an image. Shen et al. [37]
developed a globally nonuniform atmospheric light model
and introduced a bright pixel index to represent spatially
varied atmospheric light and to extract local bright surfaces.
However, these prior-based methods may lead to transmission
estimation errors due to imprecise prior information, further
producing dehazing images with slight color distortion or other
degradation phenomena.

B. Deep Learning-Based Image Dehazing

Different from prior-based methods, early deep learning-
based methods [13], [14], [15], [38] often utilize CNNs to
estimate the transmission map and atmospheric light, respec-
tively, and then use the ASM [16] to obtain haze-free images.
Nevertheless, estimating the atmospheric light value and trans-
mission map can never fully reflect the complex atmospheric
conditions found in nature. As a result, the dehazed images
often suffer from degradation issues.

Recently, designing an end-to-end dehazing network to
predict haze-free images has become mainstream since it can
achieve superior performance. For NSI dehazing, Ren et al.
[39] gated and fused multiple enhanced images derived from
initial haze images to generate haze-free images and intro-
duced the multiscale approach to train the network more
accurately. Qin et al. [40] designed a very deep network based
on feature attention and residual learning. Dong et al. [41]
proposed the MSBDN, which employs a dense feature fusion
module based on the back projection scheme and boosting
strategy to build the network. Wu et al. [17] utilized contrastive
learning to ensure that the restored image is closer to the clear
image and farther away from the hazy image in the repre-
sentation space. Zhang et al. [42] utilized a mutual promotion
framework that treats depth estimation and image dehazing
independently but optimizes them by a dual-task interaction
mechanism. For RSI dehazing, Li and Chen [19] devised
a two-stage dehazing network and adopted a coarse-to-fine

strategy to train the network. Zhang and Wang [10] presented
a collaborative criterion and a shared-weight Siamese network
structure to improve the robustness and generalization perfor-
mance for remote-sensing dehazing. Sun et al. [43] designed
a Siamese network to improve the constraint ability of the
hazy area and utilized the multiscale information to improve
the reconstruction ability of the network for the color and
texture. Wen et al. [18] introduced an innovative encoder-free
design to accomplish the lightweight and efficient target.
Du et al. [44] incorporated the ASM with CNN architecture
to realize the joint optimization of physical parameters and
model parameters. Lihe et al. [45] developed a physics-aware
network to achieve effective haze removal for remote sensing
images, providing a method with physical interpretability.

More recently, due to the powerful global modeling capabil-
ities of Transformer, most of the prevailing dehazing methods
based on this architecture have been proposed. Among them,
Guo et al. [20] first combined the local representation capa-
bility of CNN and the global context modeling capability of
Transformer to improve performance significantly. Chi et al.
[11] integrated the prior information into the Swin Trans-
former [24] to rich perceptual details, achieving accurate
remote sensing image dehazing. Song et al. [22] modified
the normalization layer in Swin Transformer [24] and intro-
duced spatial information aggregation schema to improve
the capability of multihead self-attention, achieving superior
dehazing performance in both NSI and RSI tasks. However,
these methods consume much computation when calculating
self-attention, which cannot satisfy the demand for efficiency.
Yu et al. [46] utilized the Fourier transform to decouple
the amplitude and phase information and embedded them
into CNN, realizing haze removal and structure construction
efficiently. Shen et al. [31] utilized mutual information con-
straints to accomplish complementary learning from spatial
and frequency domains.

C. Mixture-of-Experts

MoE can be regarded as a divide-and-conquer technique,
where the problem space is partitioned among several submod-
els called experts. Consequently, the output of the MoE is a
weighted blend of the outputs from various experts, achieving
dynamic adjustment. The sparse MoE generally employs a
routing mechanism to dynamically and adaptively direct input
to a subset of these experts, enhancing model capacity without
increasing computational complexity, which became popular
in natural language processing (NLP). It usually appears as
a fundamental model component, such as the FFN layer in
Transformer architecture [47], [48].

In computer vision, He et al. [49] introduced the sparse
MoE into the pan-sharpening task to boost the decoupling
learning of HF and LF features. Cao et al. [50] proposed a
multimodal gated mixture of local-to-global experts to realize
reliable infrared and visible image fusion. Yang et al. [51]
leveraged the prior from the vision-language model to choose
suitable experts for restoring degraded images. In this article,
we propose a remote sensing image dehazing method based
on the MoE mechanism for the first time.
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Fig. 2. Overall framework and its components. Specifically, the proposed SFAN adopts an asymmetric encoder–decoder design, where the MEB and DFLB
are the core components.

III. METHODS

A. Overall Architecture

The overall pipeline of the SFAN is presented at the top
of Fig. 2. Given a hazy image Ihazy ∈ RH×W×3, where
the H × W refers to the spatial size, the network initially
employs a 3 × 3 convolution to extract shallow hazy features.
Subsequently, a hierarchical encoder–decoder design is used
to extract cross-scale features. In the encoder, each layer is
constructed based on the proposed MEB. Meanwhile, the
spatial dimension of the feature maps is gradually reduced
by two times, while the channel dimension is progressively
increased by two times. Therefore, the lowest scale latent
feature representation Ylow can be obtained. The decoder starts
with the low-resolution feature Ylow and progressively recov-
ers the high-resolution hazy-free features. Thus, the spatial
dimension gradually increases while the channel dimension
gradually decreases. Different from the encoder, we insert
a DFLB between every two levels of the decoder to assist
the feature learning. To switch the feature scale, we employ
the pixel-unshuffle and pixel-shuffle operations combined
with convolution to implement the feature downsampling
and upsampling. Similar to previous work [21], [31], [52],
skip connection is also used to link the features from the
corresponding layer of the encoder and decoder. Finally, a
3 × 3 convolution is deployed in high-resolution deep features
Ydeep to generate a residual image to which the hazy image is
added to obtain the hazy-free clean image Iout. Next, we will
describe two key components: MEB and DFLB.

B. Modulation Expert Block

The self-attention mechanism in Transformers usually suf-
fers from quadratic complexity over the number of visual
tokens, making it inefficient in terms of both parameters
and computation. To this end, we consider inheriting the
Transformer-like architecture yet adopting a different man-
ner to model feature dependencies efficiently. The MoME
is designed to mine the contextual information of features

with varied scales and channels using the MoE mechanism.
Formally, given the input features X, the process of the MEB
can be defined as

X1 = X + MoME(LN(X)) (1)
X2 = X1 + GatedFFN(LN(X1)) (2)

where LN(·) denotes the layer normalization operation,
GatedFFN [53] is used for refining contextual information,
and X1 and X2 are the outputs of the MoME and GatedFFN
modules, respectively.

1) Mixture of Modulation Expert: The MoME contains a
gate network and N specially configured modulation experts
{Ei , E2, . . . , EN }. The gate produces different weights for
feature modulation, so the most suitable experts are chosen
based on the input maps. As observed, a feature projection
layer at the head and tail of the module is employed in the
block. Specifically, a 3 × 3 depthwise convolution (DConv)
followed by the channel split operation is performed on the
normalized features Xnorm to realize feature projection and
division, denoting the resulting features as Xq and Xv. Then,
Xq is inputted into the gate network to generate the weight,
which can be denoted as

Xp = GAP(Xq) + GMP(Xq) (3)
V = Xp · Ag +N (0, 1) · SoftPlus(Xp · Anoise) (4)

W = Softmax(TopK(V)). (5)

GAP(·) and GMP(·) are average pooling and maximum pool-
ing operations, which are utilized to obtain local feature
descriptors Xp. Ag and Anoise denote learnable weight matrices,
which are used together with Xp to generate V. This series
of operations aims to map the input into N router logits
for expert selection. Finally, applying the TopK algorithm,
the k positions with the highest weight are selected, and
the remaining unselected expert weights are set to negative
infinity. This way, the weights W of selected k experts can be
obtained using the Softmax, and the unselected expert weights
are assigned to zero. Here, utilizing learnable noise ensures
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Fig. 3. Our customized cross-spatial and cross-channel modulation experts.

that the probability of selecting each expert is equal. The final
output of the MoME is calculated as follows:

Xfuse =

N∑
i=1

Wi · Ei (Xq, Xv) (6)

where Xfuse is the aggregated output and Ei (·) denotes i th
modulation expert function. Finally, the modulated features
are passed through a convolution for interaction, producing the
output denoted as XMoME. In Section III-B2, we will elaborate
on the specifics of the various modulation experts.

2) Modulation Expert: To further delve into the intrica-
cies of the interdependencies among the extracted features,
we develop two forms of modulation experts, as shown in
Fig. 3: one based on cross-spatial and the other cross-channel.
Based on the diverse candidate experts, we can efficiently tap
the maximum potential.

a) Cross-spatial modulation: To efficiently aggregate
spatial-varied contextual features: 1) we directly perform
feature extraction for Xv and 2) we first perform feature
downsampling, then perform context aggregation on the
low-resolution features, and finally apply the interpolation
algorithm to upsample context features. The obtained coarse
or fine-grained context can be denoted as Xc and then uti-
lized to achieve elementwise modulation for query feature
Xq. Here, we adopt the same feature aggregation scheme as
FocalNet [26].

b) Cross-channel modulation: As the network depth
changes, the number of feature channels required for each
layer differs. Therefore, we devise a cross-channel modula-
tion schema to capture each layer’s most informative feature
representation and improve the efficiency. Precisely, we first
compress the encoded features Xv along the channel dimen-
sion, yielding the low-rank encoded feature Xc

v. Similarly, the
low-rank query features Xc

q can be attained. Depending on
the channel compression rate (R), various low-rank features
can be collected. Next, we employ the same scheme as above
to contextualize the encoded features and then leverage it to
perform elementwise modulation for Xc

q in low-dimensional
feature space. Finally, an additional convolution operation is
applied to restore the features to their original dimensionality.

C. Decoupled Frequency Learning Block

As shown in Fig. 2, the DFLB contains two inputs: the hazy
image I and the extracted hierarchical features Y. To facilitate
the decoupling of HF and LF information, the initial step

Fig. 4. Structure of the CA mechanism [55].

involves determining the low-high-frequency boundary repre-
sented as a 2-D mask, and the second is to combine it with
the transformed features using Fourier transform to obtain the
corresponding frequency features.

1) Mask Extractor: To produce the mask with the same
dimension as Y, a 3 × 3 convolution is applied on the hazy
image I to achieve feature alignment, resulting in Y0. As for
the first step, we devise a lightweight ME similar to [54]
to separate the spectra of the input hazy image. The ME is
composed of a global average pooling, two 1 × 1 convolu-
tions with the GELU activation, and a sigmoid function. The
detailed operations can be denoted as

α, β = sigmoid(Conv2(GELU(Conv1(GAP(FA))))). (7)

Based on this, two scalars, α and β, can be obtained from
zero to one. Subsequently, the LF mask is obtained by setting
the value of the region specified in the following equation to
ones and the remaining region to zeros:

Mlf

[
H
2

−
α · H

2
:

H
2

+
α · H

2
,

W
2

−
β · W

2
:

W
2

+
β · W

2

]
= 1. (8)

Similarly, the high-frequency mask Mhf can be attained by
filling in zeros in the designated rectangle area and ones in the
rest. As for the second step, the Fourier transform operation
and Fourier shifting operation are sequentially performed on
the feature maps Y0 to obtain the spectrum feature FP. Ulti-
mately, by multiplying the corresponding mask with spectrum
features, we can attain decoupled LF and high-frequency
features in the Fourier domain, denoted as Flf and Fhf,
respectively.

2) Decoupled Learning Unit: Inspired by recent stud-
ies [31], [46], which indicate that haze information of hazy
images predominantly resides in the Fourier amplitude spec-
trum, while the phase spectrum conveys more structural
information. Thus, we consider performing spectral learning
(SL) for frequency features and proceed as follows: for the
extracted HF and LF features, we apply a convolution block
that consists of two 1 × 1 convolutions and a GELU layer to
the amplitude of Flf and the phase of Fhf, respectively. Next,
we conduct the inverse Fourier operation to convert them to
the spatial domain, denoted as F̃lf and F̃hf.

To better exploit the complementarity of decoupled fre-
quency features and hierarchical spatial features Y, we utilize
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Fig. 5. Structure of MoFE.

the CA [55] mechanism, as shown in Fig. 4, which operates
on channel dimension to achieve feature interaction. Taking
LF features as an example, to be specific, we formulate the
frequency prior F̃lf as the query (Q) features and the spatial
feature Y as the key (K), value (V). All these transformed
features are extracted using a 1 × 1 convolution followed
by a 3 × 3 DConv, and then, they are reshaped to facilitate
attention calculation. Therefore, the CA between the frequency
and spatial features can be obtained by

Ylf = Attention(Q̂, K̂, V̂) = Softmax
(

Q̂K̂T

α

)
V̂ (9)

where α is a learnable parameter that regulates the magnitude
of the dot product. Ylf represents the output features guided
by the LF features F̃lf. Likewise, we can obtain the integrated
features Yhf under the guidance of the high-frequency features
F̃hf.

3) Mixture of Fusion Experts: With the features from dual
branches, as shown in Fig. 5, we propose an adaptive fusion
schema based on the MoE mechanism, termed the MoFE,
which can dynamically adjust its structure and parameters
when integrating different frequency features. Like MoME,
the MoFE comprises a gate network and multiple expert
modules. The structure of each expert consists of two cascaded
DConvs with a GELU activation. Given the low- and high-
frequency features, we first concatenate them and subsequently
perform a convolutional operation, resulting in the initial fused
features Yf, which are then fed into the gate network and
expert modules. The generation of weight W follows the same
process as in Section III-B. The final output of the DFLB
is a linearly weighted combination of each expert’s output,
modulated by the respective gating weights. The formalization
is given as follows:

Yfuse =

M∑
j=1

W j · F j (Yf) (10)

where Yfuse denotes the adaptive fused features and F j (·)

represents the j th fusion expert.

D. Loss Function

Our SFAN utilizes a spatial-frequency hybrid architecture
to construct the end-to-end network. Consequently, the loss
function comprises both spatial and frequency loss compo-
nents. Let Igt and Iout denote the clear image and the dehazed

image, respectively. The loss function can then be expressed
as follows:

Lspa =
∥∥Iout − Igt

∥∥
1 (11)

Lfre =
∥∥A(Iout) −A

(
Igt

)∥∥
1 +

∥∥P(Iout) − P
(
Igt

)∥∥
1 (12)

Ltotal = Lspa + αLfre (13)

where Lspa and Lfre represent spatial and frequency losses,
respectively, Ltotal is the final loss, and A(·) and P(·) denote
the Fourier amplitude and phase components, respectively. The
tradeoff factor α is empirically set to 0.05.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets:
1) SateHaze1K [12]: The dataset is categorized into three

levels: SateHaze1K-thin, SateHaze1K-moderate, and
SateHaze1K-thick. Each subdataset comprises 400 pairs
of synthetic remote sensing hazy images, with 320 pairs
allocated for training, 35 pairs for validation, and
45 pairs for performance evaluation.

2) RSID : This dataset was created by Chi et al. [11], which
contains a total of 1000 paired images. We randomly
selected 900 images to train and evaluated the model’s
performance using the remaining 100 images.

3) Light Hazy Image Dataset and Dense Hazy Image
Dataset [10]: Based on the haze thickness, we have
named the datasets the light hazy image dataset
(LHID) and the dense hazy image dataset (DHID). The
LHID comprises 14 490 paired images for training and
500 paired images for evaluation. The DHID includes
30 517 paired images for training and a separate set of
500 paired images for evaluation.

4) RICE1 and RICE2: The RICE [9] dataset was collected
on Google Earth, thus covering different types of Earth’s
surface, such as urban scenes, deserts, mountains, and
oceans. For RICE1, we randomly chose 402 images for
training and 98 images for evaluation, and for RICE2,
we used 590 images for training and 146 images for
testing.

5) Dense-Haze [60] and NH-HAZE [61]: This former
contains homogeneous haze and serves as the official
dataset of the NTIRE 2019 challenge. The latter con-
tains nonhomogeneous haze and serves as the official
dataset of the NTIRE 2020 challenge. Both consist of
45 training image pairs, five validation image pairs, and
five test image pairs and are used to evaluate natural
image dehazing.

6) RRSD300 [62]: This dataset is composed of a total of
300 real-world remote sensing hazy images collected
from the Microsoft Bing and DIOR datasets.

2) Implementation Details: At the macro level, the archi-
tecture of our SFAN employs a four-level encoder–decoder
structure, with the same number of MEB at each level.
In addition, we insert a DFLB between two sequential MEBs
in the decoder, so there are three DFLB modules in total.
The channel numbers from the first to the fourth level are 32,
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TABLE I
QUANTITATIVE RESULTS OF REMOTE SENSING IMAGE DEHAZING ON DHID [10], LHID [10], RICE1 [9], RICE2 [9], AND RSID [11] DATASETS.

THE FLOPS ARE CALCULATED ON THE 256 × 256 × 3 IMAGE PATCH. THE BEST RESULTS ARE IN BOLD

Fig. 6. Visual results and error maps on DHID and LHID datasets [10]. The error map is generated by computing the difference between the dehazed image
produced by each method and the corresponding ground-truth image. It is clear that our method produces better dehazing results and smaller errors than
competitors.

64, 128, and 256. At the micro level, we set six modulation
experts for each MoME and sparsely select three experts for
integration. For each MoFE, we set four fusion experts and
sparsely select two experts for integration. For training, the
ADAM optimizer with β1 = 0.9 and β2 = 0.999 is used.
For the Dense-Haze [60] and the NH-HAZE [61] datasets, the
learning rate is initialized to 2 × 10−4 and gradually decreases
to 1 × 10−6. For other datasets, the learning rate is initialized
to 2 × 10−4 and linearly decays by a factor of 0.9 every
10 epochs. We implement the proposed models on the PyTorch
framework with a single NVIDIA 4090Ti GPU to train all
models on all datasets. The batch and patch sizes are set to
4 and 256 × 256, respectively.

3) Evaluation Metrics: Two widely acknowledged met-
rics, peak signal noise ratio (PSNR) and structural similarity
(SSIM), are utilized to evaluate all datasets to access our

proposed methods. The code implementation is followed with
FFA-Net [40] and MSBDN [41].

B. Synthetic Remote Sensing Image Dehazing

To demonstrate the efficacy of the proposed SFAN,
we first conduct a comprehensive analysis with other RSI
and NSI dehazing methods. The RSI dehazing methods con-
sist of SDCP [36], MinVP [56], IDeRs [57], DCINet [10],
EMPFNet [18], FCTFNet [19], PSMBNet [43], Trini-
tyNet [11], and PhDnet-S [45]. The NSI dehazing methods
include 4KDehazing [58], AECRNet [17], DeHamer [20],
FSDGN [46], MITNet [31], DehazeFormer [22], and
DEA-Net [59].

In Table I, we present the quantitative evaluation results on
DHID [10], LHID [10], RICE1 [9], RICE2 [9], and RSID [11]
datasets, from which we find that the proposed method
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Fig. 7. Visual results and error maps on RICE1 and RICE2 datasets [9]. The error map is generated by computing the difference between the dehazed image
produced by each method and the corresponding ground-truth image.

Fig. 8. Visual results and error maps on the RSID dataset [11]. The error map is generated by computing the difference between the dehazed image produced
by each method and the corresponding ground-truth image.

Fig. 9. Visual results and error maps on the SateHaze1K dataset [12]. The error map is generated by computing the difference between the dehazed image
produced by each method and the corresponding ground-truth image.

attain superior performance in terms of PSNR and SSIM.
Specifically, our method stands out across all benchmarks

compared to recent RSI dehazing methods: TrinityNet [11]
and PSMBNet [43]. For instance, on the DHID dataset,
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Fig. 10. Visual comparisons between our SFAN and the SOTA methods on the Dense-Haze and NH-HAZE [12].

Fig. 11. Visual comparisons on the real-world remote sensing dataset (RRSD300 [62]).

TABLE II
QUANTITATIVE RESULTS OF REMOTE SENSING IMAGE DEHAZING ON

SATEHAZE1K [12] DATASETS. THE BEST RESULTS ARE IN BOLD

SFAN outperforms them by 2.984 and 0.84 dB, respectively.
Compared with the Transformer-based NSI dehazing meth-
ods, DeHamer [20] and DehazeFormer [22], SFAN achieves,
on average, 5.52 and 0.23 dB higher PSNR results on the
RICE dataset. Although DehazeFormer can achieve results
close to ours on some datasets, it hardly achieves consistent
improvements on all datasets. This is mainly attributed to the
fact that our method adopts the MoE mechanism to dynam-
ically modulate features, enabling the adaptiveness of the
network for each sample. In addition, we compare the network
parameters and FLOPs. As observed, although our method
has more parameters compared to AECRNet, FSDGN, and
MITNet, we achieve better performance with similar or lower

TABLE III
QUANTITATIVE RESULTS OF NATURAL IMAGE DEHAZING ON

DENSE-HAZE [60] AND NH-HAZE [61]. THE BEST
RESULTS ARE IN BOLD

TABLE IV
QUANTITATIVE RESULTS OF REAL-WORLD REMOTE SENSING

IMAGE DEHAZING ON THE RRSD300 [62] DATASET

FLOPs. For more comprehensive comparisons, we present the
visual effects and the corresponding error maps in Figs. 6–8.
As observed, our SFAN produces images that closely match
the ground truth, as indicated by the corresponding error maps
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(where lower brightness signifies closer alignment with the
ground truth). Notably, our method excels at preserving struc-
tural integrity and accurately recovering details, as evidenced
by the minimal errors produced.

Table II further compares the quantitative results on the
SateHaze1K [12] dataset. As observed, our proposed SFAN
can surpass the majority of methods on three haze lev-
els. For instance, the AECR-Net [17] can perform best on
SateHaze1K-thin but only obtains suboptimal results on other
datasets. Although the thick haze results in severe degradation
of image content, our method surpasses the Fourier-based
method FSDGN [46] by 0.05 in SSIM. These results highlight
the exceptional generalization capabilities of our method,
allowing it to deliver outstanding performance across a variety
of datasets. We also select two images to qualitatively analyze
the performance of each method. Fig. 9 shows the visualized
results of various methods, from which we can see that the
difference between various methods is very small. However,
by comparing the error maps, our SFAN still has slight
superiority in removing haze.

C. Real-World Natural Image Dehazing

We further assess the performance of our proposed SFAN
on real-world natural scene image dehazing datasets, such as
Dense-Haze [60] and NH-HAZE [61]. The quantitative results
are presented in Table III, showing that our SFAN outper-
forms all compared methods in terms of PSNR and SSIM.
In detail, compared to the Transformer-based method Dehaze-
former [22], our SFAN achieves noteworthy improvements of
0.79- and 0.22-dB PSNRs on these two datasets, respectively.
This is primarily because our method not only fully leverages
contextual information but also performs effective decoupled
learning in the frequency domain. Furthermore, our method
surpasses all metrics compared to frequency domain-based
methods FSDGN [46], underscoring the efficacy of separate
learning for low- and high-frequency features. The visual
results of our SFAN and other compared methods are shown in
Fig. 10, which also shows excellent performance. Since these
two datasets contain thicker haze and do not have enough
samples for training, our method cannot completely remove
the haze degradation. However, other competitors perform
worse than ours on these samples, with severe color distortion
in the dehazed results.

D. Real-World Remote Sensing Image Dehazing

To evaluate our proposed SFAN on real-world remote
sensing haze removal, we conduct comprehensive comparisons
on the RRSD300 [62] dataset. We first present the natu-
ralness image quality evaluator (NIQE [65]) and fog aware
density evaluator (FADE [66]) scores that are associated with
no-reference perceptual image quality in Table IV, from which
we can see that our method gets the lower values, meaning a
high-quality output with better perceptual results. The visual
results can further be observed in Fig. 11, and our method can
successfully eliminate haze and better restore image details,
while 4KDehazing [58] and DCINet [10] fail to remove haze
degradation. More importantly, our method does not cause a

TABLE V
ABLATION STUDY ON THE BLOCKS. FLOPS ARE COMPUTED ON

THE IMAGE PATCH SIZE OF 256 × 256 × 3

TABLE VI
ABLATION STUDY ON THE CROSS-SPATIAL AND CROSS-CHANNEL

MODULATION MECHANISMS. FLOPS ARE COMPUTED ON THE IMAGE
PATCH SIZE OF 256 × 256 × 3

color shift or over-enhancement of dehazed images, which is
better than TrinityNet [11].

E. Ablation Studies

We conduct comprehensive ablation studies to demonstrate
the effectiveness of our proposed components and the rational-
ity of our design. Unless otherwise specified, all experiments
are verified on the DHID [10] dataset according to the exper-
imental settings.

1) Architecture Contribution: As detailed in Table V,
we evaluate the effectiveness of our proposed key architectural
components by benchmarking them against a baseline model.
The baseline is implemented by replacing the MoME with
three fixed modulation experts and employing the DFLB with-
out decoupled learning for low- and high-frequency features,
maintaining similar parameters and computational complexity.
Incorporating our proposed modules into the baseline model
results in significant and consistent improvements. Experimen-
tally, the MEB achieves a performance gain of 0.653 dB in
PSNR, while the DFLB provides a 0.517-dB improvement
with only a marginal increase in parameters and FLOPs. When
both modules are integrated, the model surpasses the baseline
by 1.299 dB in PSNR, demonstrating the combined power of
the proposed components. Notably, the final model achieves
these gains without substantially increasing parameters and
computational burden, significantly outperforming other meth-
ods. These results validate the efficacy of our design.

2) Design Choices of MoME: First, we investigate the
importance of cross-spatial and cross-channel modulation
mechanisms. Here, we fix the search space containing six
modulation experts and sparsely select the top three experts
to build the MoME. The cross-channel modulation model
uses six different channel compression rates R, namely, R =

1, 2, 4, 8, 16, and 32. The cross-spatial modulation model
uses three experts on the full-resolution and downsampled
features, respectively. Due to the dynamicity of the network,
the network parameters and model complexity of the three
group experiments are slightly different. Based on the observed
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TABLE VII
ABLATION STUDY ON THE NUMBER OF EXPERTS. E6K3 MEANS THAT

THE MODULE CONTAINS SIX EXPERTS AND SPARSELY SELECTS
THE TOP THREE EXPERTS FOR AGGREGATION. S-THICK IS THE

ABBREVIATION OF THE SATE1K-THICK DATASET. FLOPS ARE
COMPUTED ON THE IMAGE PATCH SIZE OF 256 × 256 × 3

Fig. 12. Analysis for MEB. We plot the decisions made by the gating
networks with the increasing network depth (from the first to the eight MoMB)
on the LHID and DHID datasets [10].

TABLE VIII
ABLATION STUDY ON THE DFLB. THE ME AND SL REFER TO ME AND

SL. SL-INV MEANS THAT WE PERFORM CONVOLUTION OPERATIONS
ON THE PHASE SPECTRUM OF LF FEATURES AND THE AMPLITUDE

SPECTRUM OF HIGH-FREQUENCY FEATURES. FLOPS ARE
COMPUTED ON THE IMAGE PATCH SIZE OF 256 × 256 × 3

results from Table VI, it is evidence that our hybrid modulation
design yields the best performance. We speculate that as
the depth of the network increases, the scale of features is
constantly changing, and the requirements for feature recon-
struction at each layer are also different. For instance, the
lower layers often need more local information, while higher
layers desire more global information. Therefore, our spatial
and channel solution expands the search space, improves
the model’s adaptability to each layer, and further promotes
performance improvements.

Fig. 13. Feature visualization in spatial and frequency domains. We show
the features from the last DFLB in our SFAN. (a) Sampled images. (b) Input
features. (c) LF features. (d) High-frequency (HF) features. (e) Fused features.

TABLE IX
ABLATION STUDY ON THE LOSS FUNCTIONS

Second, we conduct five sets of experiments, E4K3, E5K3,
E6K3, E7K3, and E8K3, to investigate the impact of the num-
ber of experts on dehazing performance. For instance, E6K3
indicates that the MoME contains six modulation experts
and sparsely selects the top three experts for feature fusion.
As shown in Table VII, E6K3 outperforms other configurations
with nearly the same model complexity. Next, we exam-
ine the influence of sparse expert selection on performance,
as seen in configurations E6K1, E6K2, and E6K4. The results
reveal that E6K4 achieves competitive results, even surpassing
our method on the RICE1 dataset. However, E6K3 achieves
superior performance on most datasets with lower model
complexity. Consequently, we adopt E6K3 as our configuration
for each MoME in this work. For MoFE, we perform similar
ablation studies and select E4K2 as our final configuration.

Fig. 12 visualizes the decision-making process of the gate
in each MEB on DHID and LHID datasets. We find that
the decisions made by the gates are different on different
datasets. Since we sparsely select three experts in each MEB,
we observe that most layers, except the first and last layers,
tend to select fixed three experts. However, the choice of gates
is more diverse in the first and last layers. Furthermore, we find
that the second expert (E2) is used in almost every MEB on
the LHID dataset, and the first expert (E1) also performs the
same on the DHID dataset. These show the dynamicity of the
proposed network, enabling our method network the flexibility
to adapt to different samples.

3) Design Choices of DFLB: We mainly explore the con-
tribution of the ME, the SL, and the MoFE. Table VIII
summarizes the performance improvements associated with

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 10,2024 at 02:30:18 UTC from IEEE Xplore.  Restrictions apply. 



4211114 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

each component. Implementing the ME alone yields approx-
imately a 0.6-dB performance gain, indicating that feature
decoupling learning is more effective than unified learning
for frequency features. Moreover, as presented in the fourth
row, the specific SL schema enhances performance to over
29 dB. Conversely, when the inverse operation (SL-Inv) is
used, e.g., employing convolution operations on the phase
spectrum of LF features and the amplitude spectrum of high-
frequency features, the performance drops dramatically. These
observations underscore the soundness of our design. Finally,
the results in the last row demonstrate that the proposed DFLB
enhances performance by 0.946 dB compared to the baseline
model, with only a minor increase in computational overhead.

Fig. 13 presents the spatial features and frequency spectral
features before and after utilizing the DFLB. As we all know,
the LF features mainly include global shapes and structures of
an object or a scene, but the high-frequency features are more
related to edges and texture. Notably, this is very consistent
with our results of (c) and (d), which vividly showcases the
effectiveness of our design. After integrating the HF and LF
features based on the proposed MoFE, the visualized features
clearly outline the global structure and local textures.

4) Loss Functions: Most of the previous dehazing methods
only adopt spatial loss to optimize the network, yet our
SFAN adopts a dual-domain interactive structure. Therefore,
we conduct ablated experiments to verify the effectiveness
of dual losses. As shown in Table IX, we observe the sole
use of frequency loss can lead to performance degradation.
However, when both losses are used without regard to the
weighting factor, the performance is improved obviously on
all four datasets. Next, we further compare the performance
changes when the weight factor is set to different values. From
the third to fifth rows, when set to α = 0.05, we find that
the results on most datasets outperform the other two sets
of experiments. Therefore, we finally employ a hybrid loss
function Lspa + Lfre (α = 0.05) to train our all models.

V. CONCLUSION

This article proposes a novel SFAN for remote sensing
image dehazing. The core design is the proposed MoME
and the DFLB. Specifically, the MoME employs the MoE
mechanism to adaptively extract rich cross-scale and cross-
channel contextual features, which are then used for feature
modulation. The DFLB processes signals from different fre-
quency bands in the input hazy images, utilizing a dual-branch
structure to implement decoupled learning of HF and LF
features. This enables effective feature modulation and interac-
tion between the hierarchical decoder features and frequency
features. Experiments on various benchmark remote sensing
hazy datasets demonstrate that our method surpasses recent
state-of-the-art approaches. Although excellent performance
improvements have been achieved, most current remote sens-
ing dehazing methods train a separate model for each dataset.
The next focus of our research will be on how to train a
unified remote sensing dehazing model to adapt to different
dehazed images. Furthermore, the other line will aim at
enhancing real-world dehazing performance and addressing
the complexities of remote sensing haze removal.
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