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Abstract—Currently, two main research lines in efficient con-
text modeling for image dehazing are tailoring effective feature
modulation mechanisms and utilizing the Fourier transform more
precisely. The former is usually based on self-scale features that
ignore complementary cross-scale/level features, and the latter
tends to overlook regions with pronounced haze degradation and
intricate structures. This paper introduces a novel spatial and
frequency modulation perspective to synergistically investigate
contextual feature modeling for efficient image dehazing. Specifi-
cally, we delicately develop a Spatial Frequency Modulator (SFM)
equipped with a Cross-Scale Modulator (CSM) and Frequency
Modulator (FM) to implement intra-block feature modulation.
The CSM progressively aggregates hierarchical features across
different scales, employing them for spatial self-modulation, and
the FM subsequently adopts a dual-branch design to focus more
on the crucial areas with severe haze and complex structures
for reconstruction. Further, we propose a Cross-Level Modula-
tor (CLM) to facilitate inter-block feature mutual modulation,
enhancing seamless interaction between features at different
depths and layers. Integrating the above-developed modules
into the U-Net architecture, we construct a two-stage spatial
frequency modulation network (SFMN). Extensive quantitative
and qualitative evaluations showcase the superior performance
and efficiency of the proposed SFMN over recent state-of-the-
art image dehazing methods. The source code can be found in
https://github.com/it-hao/SFMN.

Index Terms—Image dehazing, spatial frequency modulation,
cross-scale, cross-level.
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I. INTRODUCTION

THE images captured in hazy or adverse scenes signif-
icantly influence the performance of high-level vision

tasks, such as object detection [1] and scene understand-
ing [2], [3], [4]. Therefore, image dehazing, which aims to
reconstruct haze-free images from their corresponding hazy
images, has been a hot topic in academic and industry
communities.

Over the past decade, inspired by the success of deep
learning, convolutional neural network (CNN)-based methods
[6], [7], [8], [9], [10], [11], [12] have achieved superior perfor-
mance. Among them, early approaches [6], [11], [12] focus on
estimating the parameters of the atmosphere scattering model
[13] by CNNs. Lately, more image dehazing approaches [9],
[14], [15], [16] employ an end-to-end network to estimate
clear, hazy-free images directly. Nevertheless, due to the local
modeling properties of CNNs, these methods still have limited
abilities to capture long-range dependencies critical for image
dehazing. Recently, Transformer-based methods [17], [18],
[19], [20] have displayed excellent global context modeling
capabilities in low-level vision tasks, including image dehaz-
ing, mainly designed based on spatial or channel self-attention
mechanisms. However, for self-attention in spatial dimensions,
its computational complexity increases quadratically with the
resolution of the feature map. Channel-based self-attention
cannot model spatial long-range dependencies well, thus lim-
iting performance improvements. We aim to construct a purely
CNN-based dehazing network that embraces the merits of
convolution and self-attention mechanisms, namely having
fine-grained detail reconstruction and mining global feature
dependencies.

FocalNet [5] first gathers contexts around each query and
subsequently modulates the query using the generated con-
text (Fig. 1 (a)), which decouples the aggregation from the
individual queries, making the interactions between features
more lightweight and efficient, which is essential for building
efficient dehazing networks. The element-wise multiplication
operation used in FocalNet can project features into an
extremely high-dimensional implicit feature space with lower
computational complexity [22]. By stacking multiple layers
of this operation in the network, the implicit dimension can
be increased exponentially to near infinity in a recursive
manner. The matrix multiplication in self-attention shares
similar attributes (non-linearity and high dimensionality) with
element-wise multiplication. However, this method neglects
to exploit cross-scale feature modulation (Fig. 1 (b)), whereas

1941-0042 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Anhui University of Science and Technology. Downloaded on July 09,2025 at 09:19:08 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1945-4016
https://orcid.org/0000-0003-4868-6526
https://orcid.org/0000-0002-2288-5079
https://orcid.org/0000-0002-0477-4412
https://orcid.org/0000-0002-9104-2315
https://github.com/it-hao/SFMN.


SHEN et al.: SPATIAL FREQUENCY MODULATION NETWORK FOR EFFICIENT IMAGE DEHAZING 3983

Fig. 1. Comparisons between previous feature modulation rule (single-scale
modulator [5]) and our proposed cross-scale and cross-level modulators.

cross-scale design has receptive fields of different sizes, which
is more suitable for adapting to the uneven distribution of haze,
thus, cross-scale representation learning helps remove haze
degradation at different scales. Meanwhile, high-resolution
features encompass more geometric details but may lack
awareness of contextual information, while low-resolution
features exhibit the exact opposite characteristics. In addition,
features at different layers encode variant information at differ-
ent scales [23], [24]. Therefore, utilizing a mutual-modulated
manner to perform cross-level feature interaction (Fig. 1 (c))
may benefit representation learning.

The other research line of context feature modeling is
implemented by applying Fourier transform [16], [25], [26],
[27]. Benefiting from the innate global properties of the
Fourier domain, several works [16], [25], [28], [29] propose
to utilize frequency statistical information to guide image
restoration. Most of them perform frequency learning on the
spatial dimension and have explored that the degradation
property induced by haze primarily manifests in the amplitude
spectrum [16], [28]. However, these methods pay less attention
to informative signals, such as edges or regions that contain
severe haze degradation.

Motivated by the above-mentioned analysis, we propose
an effective and computationally efficient two-stage network
named Spatial Frequency Modulation Network (SFMN) for
image dehazing, which follows the trend of feature modu-
lation but from spatial and frequency dual domains. Firstly,
towards intra-block feature modulation, we formulate a spatial
frequency modulator (SFM), which comprises a cross-scale
modulator (CSM), expertized in modeling spatial contextual
relationships, and a frequency modulator (FM), focus on
removing global haze degradation and reconstructing imper-
ative regions. Technically, the CSM adopts a multi-branch
structure to progressively aggregate cross-scale hierarchi-
cal context, and then utilizes element-wise multiplication to
facilitate feature interaction between query features and aggre-
gated context. The FM firstly leverages the Fourier domain’s
global properties to channel-dependent plain features and
channel-independent discriminative features separately and
then leaves the latter to modulate the former to enhance crucial
regions selectively. It is worth emphasizing that we deal with
Fourier amplitude and phase information separately in the
two-stage networks to facilitate learning of the frequency-
specific information and reduce the network’s optimization
difficulty.

Furthermore, we design a cross-level modulator (CLM) to
realize inter-block feature mutual modulation in the encoder
and decoder. In detail, it firstly leverages inherent cross-level

features from the encoder-decoder for both top-down and
bottom-up information flow, then employs a gating mechanism
to achieve context aggregation, and finally adopts the element-
wise multiplication to complete feature mutual modulation.

Different from the existing literature [5], [8], [16], [28], the
proposed method fully couples the cross-scale and cross-level
features in the spatial domain with the crucial features in the
frequency domain by element-wise multiplication operation,
thus achieving performance superior to Transformer-based
methods with lower computational complexity. As depicted in
Fig. 2, our network significantly outperforms the state-of-the-
art (SOTA) Transformer-based models such as MBTFormer-B
[20] and DeHamer [17] while utilizing only half or even less
of the FLOPs. Compared with efficient models FSDGN [16]
and AECR-Net [9], our network can strike a better trade-off

between performance and model complexity.
The main contributions of this study are listed as follows:
• In the spatial domain, we design a cross-scale modulator

and cross-level modulator based on the element-wise mul-
tiplication operation, which realizes self-modulation of
intra-block features and mutual modulation of inter-block
features, respectively, and improves high-dimensional
representational capacity with lower computational com-
plexity.

• In the frequency domain, we design a frequency mod-
ulator and combine it with the cross-scale modulator to
build the spatial frequency modulator, which serves as the
basic module of the subsequent network.

• Based on the spatial frequency modulator, we propose
SFMN, a two-stage network incorporating dual-domain
modulation in both the spatial and frequency domains, to
achieve a more efficient and accurate image dehazing.

• We perform comprehensive experiments on multiple
benchmark datasets, mainly focusing on dehazing tasks,
to showcase the superior performance of our SFMN
compared to state-of-the-art methods.

II. RELATED WORK

A. Single Image Dehazing

There are many representative dehazing algorithms,
mainly including prior-based, data-driven-based, and neural
augmentation-based methods.

Prior-based methods are the trailblazers in image dehazing,
typically relying on atmospheric scattering models (ASM)
[13] and handcrafted priors. Notable examples of these priors
include the dark channel prior (DCP) [30], non-local prior
(NLP) [31], and color attenuation prior (CAP) [32]. He et
al. [30] are the first to propose DCP combined with the
haze imaging model to estimate haze-free images directly. Li
et al. [33] introduce an adaptive sky compensation term to
address noise amplification in the sky region, thereby reducing
morphological artifacts. Subsequently, Zhu et al. [32] utilize
a linear model to determine the scene depth of hazy images
based on the CAP, enabling haze removal through the obtained
depth information. Berman et al. [31] propose a non-local
dehazing method, leveraging the observation that pixels within
a given cluster are distributed across the entire image and
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Fig. 2. Model complexity comparisons of SOTA methods, where the FLOPs are calculated with the image patch of 256 × 256, and the average inference
time is calculated on SOTS-Indoor [21] by repeating experiments five times.

located at varying distances from the camera. Li et al. [34] fur-
ther construct a dark direct attenuation prior (DDAP) to solve
the ambiguity between object radiance and the haze and noise
amplification in sky regions, achieving superior subjective
quality evaluation. However, these prior-based methods may
lead to transmission estimation errors due to imprecise prior
information, producing visually unpleasant dehazing images
with slight color distortion or other degradation phenomena.
Recent research [9], [14], [35], [36] has focused on directly
restoring clean images from the corresponding hazy images,
eliminating the necessity for a physical model. Among them,
GFN [8] introduces a groundbreaking fusion-based strategy to
generate haze-free images. FFA-Net [14] introduces a feature
attention block constructed with channel attention and pixel
attention mechanisms capable of handling diverse forms of
hazy images. MSBDN [35] leverages the boosting strategy
and the back-projection technique to achieve dense feature
fusion. AECR-Net [9] proposes contrast regularization based
on contrastive learning to restore hazy images to haze-free
images close to clean images, achieving commendable trade-
offs between network parameters and performance. Zheng et
al. propose a series of ultra-high-definition image dehazing
methods [36], [37], [38] to address the key challenges of
slow training speed and high memory consumption. C2PNet
[39] further proposes a curricular contrastive regularization
mechanism and a physics-aware dual-branch unit for image
dehazing. DIACMPN [40] integrates depth estimation and
dehazing by a dual-task interaction mechanism and achieves
mutual enhancement of performance. However, all these
methods rarely explore long-range dependencies due to the
intrinsic locality properties of CNNs, thus resulting in sub-
optimal performance. Subsequently, the self-attention-based
Transformers have been introduced into image dehazing to
model long-range dependencies and significantly improve the
performance. DeHamer [17] brings density-related priors into
the Transformer architecture and combines CNNs to achieve
local and global representations. DehazeFormer [19] redesigns
a critical structure of the Swin Transformer [41] to better
suit the task of image dehazing. MBTFormer [20] utilizes the
Taylor expansion and multi-scale patch embedding to construct
a network with linear computational complexity. DEA-Net
[42] proposes to use detail-enhanced convolution to replace
vanilla convolution and designs a content-guided attention
mechanism to handle haze non-uniformity. However, these

methods operate exclusively in the spatial domain, ignoring
the exploration of context modeling in the frequency domain
and the characteristics of haze degradation.

In addition, neural augmentation [43] -based methods com-
bining priors and CNNs have also been gradually proposed.
Zhao et al. [44] propose the RefineDNet, which adopts prior-
based DCP to restore visibility and then employs GANs to
improve realness. Li et al. [45] first estimate transmission
maps and atmospheric light and then adopt dual-scale GANs
to refine the results. Although these methods cannot achieve
end-to-end dehazing, they can achieve superior performance
on synthesized and real-world hazy images.

B. Frequency Learning in Low-Level Vision

In low-level tasks, high-frequency signals usually refer
to image details and textures, whereas low-frequency sig-
nals represent flat regions. Both of them are important for
reconstructing the restored images. There are two main types
of frequency-based methods: wavelet transform and Fourier
transform. SDWNet [46] proposes a wavelet reconstruction
module to enrich high-frequency features for image deblurring.
MWCNN [47] designs a novel multi-level wavelet network to
recover detailed textures and sharp structures. WSAMF-Net
[48] builds wavelet spatial attention to enhance the extracted
features for better structures and edges.

Recently, the effectiveness of the Fourier transform in global
modeling for low-level tasks has been demonstrated by various
studies [16], [25], [49], [50]. DeepRFT [51] incorporates
ReLU in the frequency domain to extract kernel-level informa-
tion, seamlessly integrating it into the ResBlock for effective
deblurring. FSDGN [16] pioneers the revelation that the degra-
dation property of hazy images primarily manifests in the
amplitude spectrum and designs a frequency and spatial dual
guidance network, with similar designs found in [49]. MITNet
[28] utilizes a mutual-information constraint to achieve spatial-
frequency feature complementary learning. This study focuses
more on learning from the important regions with severe haze
degradation and complex structures.

III. METHODS

A. Overall Architecture

As shown in Fig. 3, we adopt a two-stage design, and each
is constructed based on the U-Net [52]. This design aims to
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Fig. 3. The overall architecture of our proposed spatial frequency modulation network (SFMN). We adopt a two-stage U-Net design to construct the whole
network, where the proposed spatial frequency modulator (SFM) is used as the basic building block in each layer. The encoder in the second stage incorporates
the corresponding level’s output of the CLM from the encoder (blue dashed line) and decoder (purple dashed line) of the first stage network.

disentangle the Fourier prior information, e.g., amplitude and
phase spectrums, according to their unique characteristics and
then process them independently in each stage. In the first
stage, given a hazy image I ∈ RH×W×3, the SFMN firstly
adopts a 3×3 convolution to process it and obtain the shallow
features I0. Next, the shallow features are sent to a four-level
symmetric encoder-decoder. Each encoder or decoder contains
a spatial frequency modulator (SFM). Give I0 as input, and
encoders decrease the spatial resolution by half while increas-
ing the number of feature channels as the stage progresses.
On the other hand, decoders, using low-resolution features as
input, decrease half of the feature channels while doubling
the size of feature maps. A cross-level modulator (CLM)
used in the encoder is designed to implement multi-scale
feature interaction and intra-block global feature modeling.
Then, the upsampled features are concatenated with the output
of the corresponding level from the CLM to improve the
information flow. In the end, following [53], we introduce the
supervised attention module (SAM) to generate output images,
represented as O1, allowing useful ones to propagate to the
next stage and making stable optimization.

Like the first stage, the second stage adopts almost the
same structure to extract features. However, several crucial
points warrant emphasis. (i) Instead of directly using I as
input, we opt for combining the phase spectrum of the input
image and the amplitude spectrum of the first stage’s output
image to function as the input features. (ii) The FM in the
second stage performs the Fourier phase spectrum learning
rather than the amplitude spectrum learning. (iii) The encoder
incorporates the corresponding level’s output of the CLM
(purple and blue dashed lines in the Fig. 3) from the first
stage network, which enhances feature propagation, preserves
the fine structural details in the original images, and ensures
stable network training. (iv) A convolutional layer is applied
to generate the residual image, which is added to the original
hazy image to obtain the final output O2.

B. Spatial Frequency Modulator (SFM)

Unlike traditional Transformer [54] architectures, our pro-
posed SFM operates on dual-domain features. As shown
in Fig. 4, it mainly consists of two LayerNorm (LN), a
cross-scale modulator (CSM), a convolutional block, and a fre-
quency modulator (FM). By synergistically organizing them,
the network can effectively realize contextual self-modulation
of intra-block features.

1) Cross-Scale Modulator: As displayed in Fig. 4 (a), to
achieve cross-scale spatial feature aggregation, we adopt a
multi-branch architecture to achieve spatial context extraction
of specific-scale features and exploit them in a progressive
strategy. Supposing the input features as Fcs ∈ R

H×W×C , we
first utilize average pooling (AP) operations with different
downsampling ratios to convert Fcs into distinct scale-spaces.
For each branch, the resulting features obtained by passing
through HFE are incorporated into the next branch via feature
upsampling followed by an element-wise addition operation.
Therefore, the design is capable of removing haze information
in a coarse-to-fine manner. Formally, the whole operation
process in the i-th branch can be expressed as:

Mcs,i = HFE(AP2b−i (Fcs) + UP2(Mcs,i−1)), (1)

where b denotes the number of branches, AP2b−i (i =

1, 2, · · · , b) denotes the average pooling with the downsam-
pling rate 2b−i, UP2 denotes the interpolation upsampling with
the upsampling rate as 2, and HFE(·) is the hierarchical feature
extractor function. Mcs,b is the output of the last branch and
Mcs,0 = 0.

For hierarchical feature extractor in the i-th branch, we
stack L = 3 depth-wise convolutions (DConvs) with different
kernel sizes to progressively extract contextualization features.
Specifically, we initialize the kernel size with 3 × 3 and
gradually increase it by two per layer. As for the l-th layer,
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Fig. 4. Overview of the core components. (a) The architecture of the proposed cross-scale modulator (CSM). (b) The architecture of the hierarchical feature
extractor (HFE). (c) The architecture of the proposed frequency modulator (FM).

the whole operation process can be denoted as

F i,l
cs = GELU(DConvk×k(F i,l−1

cs )), (2)

where F i,l
cs denotes the output features in l-th layer of the i-th

branch. This series of operations enables the network to obtain
multi-granularity information. Then, we perform a global
average pooling on F i,L

cs to obtain global spatial information.
Thus, there are L + 1 feature maps in total. Subsequently,
we employ a gating mechanism to interact between query
and multi-granularity features to dynamically amalgamate the
obtained coarse-to-fine features. In detail, the element-wise
multiplication is initially applied to the respective gating
weights and features. Next, we utilize element-wise addition
to aggregate all modulated features. The calculation procedure
can be formulated as:

Mi
cs =

L+1X
`=1

W i,l
cs � F i,l

cs, (3)

where W i,l
cs ∈ RH×W×1 is the gating weight for the l-th

layer that is obtained from input features via channel split
operation, � is the element-wise multiplication operation, and
Mi

cs is the aggregated features in the i-th branch. We denote
the modulator in the last branch as Mb

cs. Since the modulator is
adjusted according to the cross-scale intra-block features, the
self-modulated manner can implicitly and efficiently improve
feature representation. Finally, we adopt the element-wise
multiplication to modulate the query features Qcs. Therefore,
the output F̂cs can be computed as follows:

F̂cs = f pr j2
cs (Qcs � f pr j1

cs (Mb
cs)), (4)

where f pr j1
cs (·) and f pr j2

cs (·) are the 1× 1 convolutional layers,
which enable the modulated features to fully interact across
various channels.

2) Frequency Modulator: As shown in Fig. 4 (c), the FM
contains two branches. Each branch learns respective feature
representations within the Fourier domain. According to the
theory of Fourier transform and previous work [16], [25], (i)
the Fourier transform in a 2D image can be decomposed into

the x-axis and y-axis, representing diffraction in the horizontal
and vertical directions, respectively; (ii) processing informa-
tion in the Fourier domain using 1× 1 convolution can reflect
the global features of the image; (iii) the amplitude spectrum
mainly reflects the global haze-related information, and phase
represents the texture structure for image dehazing. Therefore,
we perform convolutional operations on different spectrums at
two stages. Subsequently, we will take the amplitude spectrum
(the first stage) as examples to illustrate.

In the first branch, we perform frequency learning in whole
channel-dependent feature maps. Given an input feature maps
F f re, we firstly utilize the fast Fourier transform (FFT) [55]
to obtain frequency features:

Freal
f re , F

imag
f re = FFT (F f re), (5)

where Freal
f re and F imag

f re represent the real and imaginary parts
of the spectrums. The amplitude component A f re and phase
component P f re can be obtained based on real and imaginary
features.

A f re =
h
Freal

f re
2
(u, v) + F imag

f re
2
(u, v)

i1/2
,

P f re = arctan

"
Freal

f re (u, v)

F imag
f re (u, v)

#
, (6)

where u and v denote the horizontal and vertical coordinates.
Then, two cascaded 1× 1 convolutions followed by a GELU
[56] activation function are performed on the amplitude infor-
mation, and we denote the produced new amplitude features
as A′f re. Next, we further convert the processed new Fourier
features A′f re and P f re to their original space by using the
inverse FFT operation. Considering that each channel of the
resulting features differs in structure and haze degradation, we
perform the channel-separated representational learning using
a 3 × 3 depth-wise convolution. The process can be denoted
as:

F′f re = DConv3×3(FFT −1(A′f re, P f re)), (7)

where the F′f re is the output of the first branch.
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Fig. 5. The detailed illustration of the proposed cross-level modulator (CLM), which adopts a mutual-modulated manner to integrate inter-block features.

The second branch is designed to enhance the reconstruction
of areas containing severe degradation or complex structures.
Drawing inspiration from CBAM [57], our approach begins by
compressing the input feature map along the channel dimen-
sion using both max pooling and mean pooling operations.
Subsequently, the general content feature can be obtained via
a 3× 3 convolution,

Fg = Conv([GAP(F f re),GMP(F f re)]), (8)

where GAP(·) and GMP(·) represent the global mean pooling
and global max pooling respectively, [·, ·] denotes the channel
concatenation operation, and Conv(·) denotes convolutional
operation. The obtained Fg ∈ R

H×W×1 contains important
locations to focus on, which denotes channel-independent
global representation. Moving forward, similar to the first
branch, we also transform the Fg into amplitude and phase
spectrum features in the Fourier domain, and then conduct the
corresponding spectrum feature learning. Finally, we convert
the frequency features to format the new spatial features F′′f re
by adopting the inverse FFT.

To integrate features from dual branches, we further
empower the single-channel content features F′′f re to modulate
the channel-dependent global features F′f re using the broad-
casted calculation. This process is expressed as follows:

F̂ f re = F′f re � F′′f re, (9)

where F̂ f re is the final output of this module. Compared
with the previous Fourier learning schema, our FM selectively
modulates essential information, thus improving haze removal
and reconstructing image structure more accurately.

C. Cross-Level Modulator (CLM)

The SFM employed in each level empowers the network
to capture intra-block contextual information. However, effec-
tively utilizing cross-level information in both the encoder
and decoder is crucial for enhancing inter-block feature mod-
ulation. Simple channel concatenation operations, as used
in each level of the encoder-decoder, may not effectively
leverage cross-level complementary information. To overcome
this issue, we design a CLM to interconnect the deep features
from their respective scales, as shown in Fig. 5.

The CLM is designed based on the idea of the CSM.
However, there are several different points to emphasize. (i)
For the multi-level cross-scale features, we first utilize the

downsample and upsample operations to enable both top-down
and bottom-up information flow. This procedure combines
features from different receptive fields and enriches contextual
representations. Taking the i-th level of the encoder or decoder
as instance, we denote the enhanced cross-scale featues as˚
F i,l

cl

	3
l=1, which corresponds to the

˚
F i,l

cs

	3
l=1 in the CSM. (ii)

To formulate the query features and gating weights, we first
adopt channel concatenation and 1 × 1 convolution to fuse
the enhanced cross-scale features, and then adopt the channel
Split operation to respectively obtain Qi

cl and W i
cl. (iii) Since

the contextual feature dependencies have been captured based
on the intra-block manner, we do not adopt additional average
pooling operations similar to the CSM. Therefore, the cross-
level aggregation can be written as:

Zi,out
cl =

3X
`=1

W i,l
cl � F i,l

cl , (10)

where Zi,out
cl denotes the cross-level aggregated features in the i-

th level. Further, the cross-level modulator Mi
cl can be attained

by performing a feature projection convolution. Therefore, the
final outputs in the i-th level are given as:

F̂ i
cl = f pr j2

cl (Qi
cl � f pr j1

cl (Mi
cl)), (11)

where f pr j1
cl (·) and f pr j2

cl (·) denote 1×1 convolution, F̂ i
cl denotes

the ouput of the i-th level. The outputs at all three levels
are adaptively modulated by cross-level features obtained
through SFMs, facilitating the mutual modulation of inter-
block features.

D. Loss Function

Our method adopts a two-stage architecture to construct
the overall network. Therefore, the loss function consists of
two parts: Lstage1 and Lstage2. Moreover, in the frequency
domain, both stages operate on amplitude spectra and phase
spectra, respectively. It is crucial to provide the corresponding
supervision for these processes. Let Igt denote the clean image.
Then, the loss function can be denoted as:

Lstage1 =


O1 − Igt




1 + α



A (O1) −A
�
Igt
�



1 ,

Lstage2 =


O2 − Igt




1 + β



P (O2) − P
�
Igt
�



1 , (12)

where the first term and the second term in each equation
above are performed on spatial and frequency domains, respec-
tively, α and β are the trade-off factors, we empirically set them

Authorized licensed use limited to: Anhui University of Science and Technology. Downloaded on July 09,2025 at 09:19:08 UTC from IEEE Xplore.  Restrictions apply. 



3988 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

TABLE I
QUANTITATIVE COMPARISON OF STATE-OF-THE-ART METHODS FOR IMAGE DEHAZING. THE BEST RESULTS ARE BOLD

as 0.05 according to MITNet [28], A(·) and P(·) denote the
amplitude and phase components, respectively. Thus, the total
loss Ltotal is denoted as:

Ltotal = Lstage1 + Lstage2. (13)

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Following recent works [17], [20], we employ the Indoor
Training Subset (ITS) and Outdoor Training Subset (OTS) of
the RESIDE dataset [21] as natural daytime image dehaz-
ing training data, and evaluate the resulting models on the
corresponding test sets, i.e. SOTS-Indoor and SOTS-Outdoor,
respectively. To assess the robustness of our SFMN in real-
world scenarios, we utilize three commonly used real-world
images, such as O-HAZE [60], Dense-Haze [61], and NH-
HAZE [62]. Further, image desnowing datasets, including
CSD [63], SRRS [64], and Snow100K [65], are adopted to
verify the generalization abilities of our method. In addition,
Peak Signal-to-Noise-Ratio (PSNR) and Structural Similarity
Index Measurement (SSIM) [66] are utilized for evaluation,
and the metric code is based on the FFA-Net [14] and MSBDN
[35]. We also report the model size and FLOPs, where the
latter is calculated on the 3×256×256 image patch. To further
demonstrate the efficiency of various models, we choose the
Dense-Haze dataset with a resolution of 1600 × 1200 to
evaluate the average inference time.

The number of SFM in each layer is set as N = 1. In each
stage, each level of encoder and decoder from high-to-low res-
olution features is equipped with 20, 40, 80, and 160 channels,
respectively. Besides, we use 2×2 transposed convolution and
4×4 strided convolution as the upsampling and downsampling
layers. However, the upsampling and downsampling operation
in the CLM is followed by previous work [53] for reducing
model size. During training, we employ the ADAM optimizer
[67] with β1 = 0.9, β2 = 0.999, and ε = 10−8. Within each
mini-batch for different datasets, we augment training samples
by applying horizontal or vertical flips and rotations with 90◦,

180◦, and 270◦. Our SFMN is implemented with the PyTorch
[68] on an NVIDIA Tesla V100 GPU. Unless specifically
emphasized, the patch and batch sizes are set to 256 × 256
and 16, respectively.

Our models are trained for 800 epochs on the ITS dataset
and 40 epochs on the OTS dataset. As for real-world dehazing
datasets, we train all models for a total of 4000 epochs on an
800 × 800 patch size, and the batch size is set to 4. As for
image desnowing datasets, our models are trained for 1000K
iterations. The initial learning rate of all models mentioned
above is set to 2 × 10−4 and gradually reduced to 2 × 10−6

with the cosine annealing.

B. Experiments on Synthesized Dehazing Datasets

We compare SFMN with 14 CNN- and Transformer-based
image dehazing methods, including DCP [30], DehazeNet
[11], AODNet [6], FFA-Net [14], MSBDN [35], AECR-Net
[9], Restormer [18], DeHamer [17], SGID-PFF [69], FSDGN
[16], MITNet [28], MBTFormer-B [20], DehazeFormer-M
[19], DEA-Net [42], and OKNet [59]. For those methods
that did not provide pre-trained models, we re-trained them
according to the provided codes.

1) Quantitative Evaluation: Table I shows the quantitative
results on five datasets, from which we observe that the
proposed SFMN attains 41.44 dB and 37.72 dB PSNR values
on the SOTS-Indoor and SOTS-Outdoor datasets, respec-
tively. Compared to the SOTA method MBTFormer-B [20],
our approach achieves 0.73 dB and 0.30 dB PSNR perfor-
mance gains, respectively. Additionally, compared with the
recent Fourier transform-based method FSDGN [16], SFMN
improves PSNR by 2.81 dB while maintaining a lower compu-
tational cost (FLOPs: 19.59 vs. 18.39). This indicates that our
method excels at leveraging the spatial and frequency global
features to improve performance. Compared to the recent
OKNet, our method has obvious advantages on all datasets.
Furthermore, we also evaluate the performance on real-world
datasets. As we can see, our SFMN performs better than all
previous methods, except for the SSIM value on the NH-
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Fig. 6. Visual comparisons on the SOTS [21] dataset. Zoom in for a better view.

TABLE II
COMPARISON OF NIQE AND FADE FOR DEHAZING METHODS IN THE

LAST THREE YEARS. THE BEST RESULTS ARE BOLD

HAZE. What is even more remarkable is that our approach
obtains a better balance between model complexity and per-
formance compared to Transformer-based methods such as
DeHamer, Restormer, MBTFormer-B, and DehazeFormer-M.
These findings substantiate the effectiveness and efficiency of
our contextual feature modeling. In Table II, we further eval-
uate NIQE and FADE of recent three-year dehazing methods
on the SOTS-Indoor and SOTS-Outdoor datasets. It can be
seen that SFMN achieved the lowest results on both datasets,
indicating that its perception effect and dehazing ability are
better.

2) Visual Comparisons: In Fig. 6, we can observe that other
competitors successfully remove most of the haze but appear
to have colorfulness distortion or texture loss. In contrast,
our method effectively removes the homogeneous haze and
reconstructs vivid texture and details. Fig. 7 presents two
samples from the Dense-Haze and NH-HAZE datasets. As we
know, these two datasets are generated by professional haze
machines and thus contain non-homogeneous and thicker haze
than the RESIDE dataset. We found that all methods have
difficulty in restoring results close to the ground-truth image
and produce color distortions. In comparison, our method
produces slight artifacts and less residual haze, resulting in
a better overall appearance.

C. Experiments on Real-World Dehazing Datasets

We evaluate the performance of the proposed SFMN on the
natural real-world hazy images, whose corresponding haze-
free images are not available. The quality index NIQE [75]
and FADE [76] are used to evaluate 29 real-world dehazing
images [34], and the results are shown in Table III. DCP
[30] and DDAP [34] are two prior-based algorithms, and they
can perform better than data-driven-based methods. Due to
the domain gap between synthetic and real-world data, our
method and other CNN-based methods indeed perform worse
than prior-based methods. However, as observed, our SFMN
achieves better than purely data-driven methods. To achieve
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Fig. 7. Visual comparisons on Dense-Haze [61] and NH-HAZE [62] datasets. Zoom in for a better view.

Fig. 8. Visual results of various methods on real-world hazy images, where haze-free images are not available. Zoom in for a better view.

TABLE III
COMPARISON OF QUANTITATIVE RESULTS ON REAL-WORLD RAINY IMAGES, AND NOTE THAT LOWER SCORES INDICATE BETTER IMAGE QUALITY

TABLE IV

QUANTITATIVE COMPARISON FOR IMAGE DESNOWING ON CSD [63], SRRS [64], AND SNOW100K [65] DATASETS. THE BEST RESULTS ARE BOLD

better real-world image removal, we follow DehazeFormer
[19] and train the network using a synthetic OTS, Dense-
HAZE, and NH-HAZE mixed dataset to obtain SFMN-Mix.
The results show that the model can achieve competitive
performance, similar to the prior-based method. As shown
in Fig. 8, the prior-based method DCP [30] and DDAP [34]
perform more photo-realistic than other data-driven methods,
including FFA-Net [14], MSBDN [35], DEA-Net [42] and
MBTFormer [20], while some slight artifacts can also be
produced, especially in the sky regions. In contrast, our method
produces balanced visual dehazing results. It is particularly
noteworthy that the model SFMN-Mix trained on the mixed
dataset obtained very visually pleasing results. This is partly
because our SFMN has a powerful discriminative representa-

tion ability that incorporates spatial and frequency contexts.
All 29 real-world compared results can be found in the
supplementary material.

D. Experiments on Image Desnowing

To evaluate the generalization capabilities of our SFMN
in other low-level tasks, we further conduct experiments
on image desnowing datasets (e.g., CSD [63], SRRS [64],
and Snow100K [65]), showing the quantitative results in the
Table IV. Notably, our approach can lead to most image
desnowing methods on three datasets. Among them, Restormer
[18] and NAFNet [73] are universal image restoration models
that employ spatial global modeling mechanisms. However,
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Fig. 9. Visual comparisons of image desnowing methods on the CSD [63] dataset. Zoom in for a better view.

Fig. 10. The ablation study of the number of branches in CSM on different image dehazing datasets.

our method only performs slightly worse on one dataset,
highlighting that the schema of incorporating cross-scale,
cross-level, and frequency feature modulation together is effec-
tive for image desnowing tasks. Fig. 9 shows desnowing
visual comparisons on the CSD [63] dataset, from which we
observe the proposed SFMN can output more visually pleasing
desnowing results, however, other competitors still retain slight
degradation and produce blurry reconstructed images.

E. Model Complexity Analysis

To comprehensively showcase the efficiency and effective-
ness of the proposed SFMN, we further compare the number
of parameters, number of FLOPs, and average inference
time with the SOTA methods over the last three years. As
shown in Fig. 2 and Table I, our method achieves the best
performance with the lowest FLOPs, relatively low parame-
ters, and relatively faster inference speed. FSDGN [16] and
AECR-Net [9] utilize fewer parameters to achieve faster
inference speed, but there is a large performance gap com-
pared with our method. MBTFormer-B [20] and DeHamer
[17] adopt the Transformer architecture, thereby consum-
ing more time to deal with images. In contrast, we jointly
adopt spatial-frequency design to mine feature dependency
relationships, reaching a good trade-off between model com-
plexity and performance. In addition, we also evaluate the
inference time on high-resolution images and observe that
the Transformer-based MBTFormer-B has an extremely slow
inference speed, which is mainly caused by the self-attention
operation.

F. Ablation Study

We investigate the effectiveness of our proposed modules
and architecture design. For all ablation studies, we train our
models on the ITS [21] dataset for 200K iterations with the
initial learning rate as 2e−4 and batch size as 16. Unless
specified in the table, other configurations are identical to that
of our final dehazing model.

1) The Ablation Study of CSM: We first conduct ablation
studies to clarify the influence of branch numbers in the CSM
on four datasets. As shown in Fig. 10, the vertical axis is
PSNR, and the circle radius is the model parameters. As
can be observed, the performance gains on different datasets
are different. For the low-resolution ITS and OTS datasets,
employing two branches can achieve the best performance.
When equipped with more branches, the performance of
the corresponding models decreases, possibly because the
disadvantage of reducing the size of low-resolution features,
resulting in the loss of too much spatial information, outweighs
the advantages of multi-scale learning. Nonetheless, the per-
formance maximums are achieved when employing three
branches for the high-resolution Dense-Haze and NH-HAZE
datasets. The main reason is that these two datasets include
higher-resolution images, and when the images undergo large-
scale downsampling, the finer details are lost. Since we aim
to pursue efficient image dehazing, we uniformly set two
branches for all datasets. Fig. 11 shows the feature variation
when the branch number is three, and we observe that the
obtained feature exhibits a coarse-to-fine form. This is because
low-scale features have a larger receptive field, which is also
consistent with our motivation. We also study the impact of
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Fig. 11. Visualization of features in CSM when the branch number is set to
three, where Mcs,i denotes the output of i-th branch in the CSM.

TABLE V

ABLATION STUDY OF KERNEL SIZE IN THE CSM

kernel size in CSM for performance in Table V. Two groups
of experiments are conducted: one involves keeping all kernel
sizes the same, while the other progressively increases the
kernel size at each level. As can be observed: (i) opting for
a moderate kernel size (All k = 7) yields slightly better
performance than choosing a small kernel size; (ii) employing
too large a kernel size at each level (k = [7,9,11]) may
lead to performance degradation, this could be attributed to
the limitations of small kernel sizes in capturing long-range
dependencies and the loss of local structural information with
overly large kernel sizes. However, our setting can progres-
sively fuse local-to-global features. When k = [5,7,9] or k = 7,
the result performs better than ours yet comes at the cost of
longer training times and increased expenses. For a better
performance/cost trade-off, we set k = [3,5,7] in the final
models.

2) The Ablation Study of FM: We alternately utilize the
Fourier transform in two branches of the FM to conduct
validations. The first branch focuses on learning from the
channel-dependent global features, while the second branch
emphasizes learning from the channel-independent single con-
tent features based on crucial regions. Thus, utilizing the latter
to modulate the former can achieve effective feature selection.
In Table VI, the results after individually using them perform
inferiorly to the final model, consistent with our analysis.
Besides, the effect of element-wise sum for fusion is not as
good as element-wise multiplication, which further proves the
rationality of our design.

3) Component Analysis: Firstly, we perform a breakdown
ablation to explore the effect of each component and their
interaction. The baseline network (a) is derived by adopting
three cascaded 3×3 convolutions to replace SFM and remov-
ing the CLM from SFMN. As indicated in Table VII, the
model attains 35.21 dB PSNR, underscoring the superiority
of our two-stage design. Then, we embed the CSM into the
network to construct the other baseline, named model (b),

TABLE VI

ABLATION STUDY OF THE FM

Fig. 12. Visualization of the feature map and Fourier spectral features before
and after using the proposed components, including CSM and FM.

TABLE VII

BREAK-DOWN ABLATION STUDY FOR BETTER EVALUATION OF THE PRO-
POSED COMPONENTS, INCLUDING CSM AND FM

and the model achieves 2.04 dB performance gains. Based
on models (a) and (b), we further embed the FM into the
corresponding networks, and the corresponding models (c)
and (d) achieve additional performance boosts of 1.07 dB
and 0.74 dB, respectively, indicating that the frequency mod-
ulation mechanism can cooperate with our spatial contextual
modulation mechanism well. Finally, when we merge CLM
into model (d), model (e) can obtain the best performance,
showing its significant contribution. To eliminate the doubt
that the performance gain is due to the increase in parameters,
we add a new ablation experiment, that is, directly adding
the relevant convolution operations in CLM to the network
to ensure that the number of parameters and FLOPs of the
model remain unchanged, recorded as model (f). As can
be seen from the table, the performance of the model has
only increased by 0.08 dB. The specific reason is that the
model has only undergone some separable depth-wise con-
volutions for feature extraction, but lacks further interaction
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Fig. 13. Visualization of the feature map before and after using CLM. Here, we present all results in the encoder of the first-stage network.

TABLE VIII

FURTHER STUDIES OF CSM AND CLM, INCLUDING THE MODULATION
AND GATING MECHANISMS

between features. Secondly, we microscopically investigate
the influence of the gating mechanism in Eqs. (3) and (10)
and modulation mechanism (element-wise multiplication) in
Eqs.(4) and (11) for performance. As shown in Table VIII,
removing these operations leads to an obvious performance
drop yet maintains the same parameters and FLOPs. These
show that (i) the gating mechanism helps the model to learn
to aggregate useful information adaptively, and (ii) adopting
element-wise multiplication to modulate initial features is a
simple and powerful way, which further enhances feature
second-order interaction.

Fig. 12 visualizes the output features from the proposed
SFM. We found that spatial features and frequency features
focus on different aspects. In detail, the CSM not only high-
lights the edge information but also shows clearer outlines. In
addition, FM operates in the Fourier domain and focuses on
both high and low frequency information. Therefore, the final
produced features contain abundant and rich global and local
contextual information, which is vital to reconstructing image
structure information.

We visualize the feature maps before and after applying
the CLM shown in Fig. 13. As we all know, high-resolution
features usually lack awareness of contextual information.
However, they contain abundant geometric information, such
as points, edges, textures, and so on. In contrast, the low-
resolution features are short in geometric information but
contain adequate contextual information. To this end, our CLM
can better exploit the within-scale characteristics and the cross-
level complementarity. After using the module, we discover
that (i) high-resolution features (Level 1) not only contain
more fine-grained details but also add rich contextual informa-
tion, and (ii) low-resolution features (Level 3) replenish more
details and explicit textures, further verifying the necessity of
cross-level hierarchical feature modeling.

TABLE IX
THE ABLATION STUDY OF THE DESIGN OF SFM

TABLE X
THE QUANTITATIVE COMPARISONS BEFORE AND AFTER EMPLOYING THE

CLM TO RESTORMER [18] AND NAFNET [73]

4) The Design of Spatial Frequency Modulator (SFM):
In the final model, we stack the CSM and FM modules to
construct the SFM sequentially. Here, we explore more ways
to build this module. As shown in Table IX, model (a) (denoted
as FM→ CSM) and model (c) (denoted as CSM→ FM) adopt
sequential manner while having a different order of CSM and
FM, model (b) (CSM ‖ FM) adopts the parallel format to
design SFM. As we can see, model (a) presents the worst
performance, and model (b) shows relatively low results. We
consider that the frequency information can provide additional
prior knowledge, while this requires the support of powerful
spatial information. The paper demonstrates that using the
frequency domain module alone does not yield remarkable
results.

5) Extend Cross-Level Modulator (CLM) to Other Back-
bones: To further demonstrate the effectiveness of the
proposed CLM, we conduct a group of experiments by plug-
ging it into existing well-designed image restoration networks,
such as Restormer [18] and NAFNet [73], to experiment on
the SOTS-indoor dataset. As for Restormer, we set the number
of Transformer blocks as [2, 3, 3, 4] from level 1 to level 4, and
the basic channel number is set to 16. The other configurations
are consistent with the original paper. As for NAFNet, all
settings are consistent with the original paper. As shown in
Table X, the models obtain more performance gains after
employing our CLM but with only a slight increase of FLOPs
and parameters, which is mainly attributed to the superior
cross-level contextual modeling capabilities of the CLM.

6) The Effectiveness of Two-Stage Design: We customize
a single-stage network based on our proposed components,
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Fig. 14. Ablation studies of two-stage design. (a) compares the error maps between dehazed images and clear images. (b) shows the training process for
training single-stage and two-stage networks.

where two SFMs are embedded into each layer of the encoder
and decoder to ensure similar model complexity and size. The
comparisons of the error map and convergence curves are
shown in Fig. 14. The error map between the dehazed image
and the ground-truth image reflects the learning ability of the
method in detail recovery [77]. Clearly, our two-stage design
can preserve the structure and recover details more accurately,
which can be observed from the smaller error produced. In
addition, our method converges slightly faster than the single-
stage method. These results fully demonstrate the rationality
of our two-stage design.

V. CONCLUSION

This paper proposes a spatial frequency modulation network
(SFMN) for image dehazing. The core design is efficient
global modeling components from spatial and frequency
domains. In detail, we design a basic embedding module,
named spatial frequency modulator, based on the inter-block
feature modulation manner. In the spatial domain, the cross-
scale modulator is developed to gradually capture hierarchical
contextual features to achieve spatial feature modulation. The
frequency modulator is implemented in the frequency domain
to achieve global haze removal and emphasize regions with
severe haze degradation and complex structures. In addition,
we construct a cross-level modulator to achieve inter-block
feature mutual modulation in the encoder and decoder of the
two-stage network. Extensive experiments demonstrate that
our SFMN achieves superior performance over recent state-of-
the-art methods. Meanwhile, extended experiments on image
desnowing also prove the robustness of our method.
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