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ABSTRACT. Test-time adaptation (TTA) aims to address potential differences in data distribution
between the training and testing phases by modifying a pretrained model based on
each specific test sample. This process is especially crucial for deep learning models,
as they often encounter frequent changes in the testing environment. Currently,
popular TTA methods rely primarily on pseudo-labels (PLs) as supervision signals
and fine-tune the model through backpropagation. Consequently, the success of the
model’s adaptation depends directly on the quality of the PLs. High-quality PLs can
enhance the model’s performance, whereas low-quality ones may lead to poor adap-
tation results. Intuitively, if the PLs predicted by the model for a given sample remain
consistent in both the current and future states, it suggests a higher confidence in
that prediction. Using such consistent PLs as supervision signals can greatly benefit
long-term adaptation. Nevertheless, this approach may induce overconfidence in the
model’s predictions. To counter this, we introduce a regularization term that penalizes
overly confident predictions. Our proposed method is highly versatile and can be
seamlessly integrated with various TTA strategies, making it immensely practical.
We investigate different TTA methods on three widely used datasets (CIFAR10C,
CIFAR100C, and ImageNetC) with different scenarios and show that our method
achieves competitive or state-of-the-art accuracies on all of them.
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1 Introduction
Deep learning has made considerable progress in various visual tasks, such as semantic segmen-
tation, video understanding,1 image classification,2 and image restoration.3,4 Nonetheless, these
successful implementations hinge on a fundamental presupposition: the data distribution of test
samples must align with that of the training dataset.5,6 In actual scenarios, this assumption does
not always hold true because there are often distribution differences between test samples and
training data, a phenomenon known as “domain shift.”When confronted with domain shift, even
subtle variations can lead to notable degradation in the performance of deep neural networks.7,8

For instance, a model trained exclusively on sunny-day images may exhibit a substantial decrease
in recognition accuracy when presented with environmental conditions such as rain, fog, snow, or
nighttime. Due to privacy concerns or legal restrictions, source data are often deemed unavailable
during inference, making this setting more challenging than unsupervised domain adaptation
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(UDA) but also more realistic. To tackle these issues, there is a growing need for approaches that
can adapt models during test time, particularly in an online fashion. Test-time adaptation (TTA)
methods emerge as a promising solution to enhance the performance of deep learning models in
the face of domain shifts.

The categories of TTA approaches include batch normalization (BN), pseudo-label (PL),
information entropy, and feature alignment. BN replaces the statistics inherited from the source
dataset with those computed from the current batch of test data.9 Recent research10 has shown
that the batch size significantly impacts the accuracy of BN adaptation. PL generates pseudo-
labels for test data and uses them to fine-tune the model.11 Nevertheless, label noise and con-
firmation bias can affect PL.12 Information entropy fine-tunes the pretrained model by
minimizing the prediction entropy of the test data.13 Feature alignment, such as TTT+,14 intro-
duces a test-time feature-matching strategy that stores the mean and covariance matrix of the
features during training and matches the current features with the previous ones during testing.

Although existing methods have demonstrated impressive performance, their performance
is limited by the quality of PLs generated by pretrained models. Conventional self-training
approaches use the classifier’s predictions on test data as PLs and fine-tune the classifier to adapt
to the PLs.15 Even so, this approach is prone to error accumulation.16 Since the model is updated
based on the current test data, if the current PL predictions are inaccurate, the updates based on
the incorrect PLs will affect the subsequent model adaptation process. In addition, conventional
self-training strategies do not consider the reliability of the current PLs but merely filter out the
data that satisfy certain conditions from the present data for updating.

To address these issues, we propose a self-training framework based on an intuitive
assumption: if the current model’s prediction on test data is consistent with the prediction of
the model updated based on the future state of the same data, then we can consider the current
PL to be accurate. Based on this supposition, we design an effective strategy to enhance the
accuracy of PLs and reduce the error accumulation problem. On the other hand, we introduce
a regularization term to penalize the confident output distribution, which increases the weight
of misclassified categories to prevent the model from being overconfident in the prediction.
Furthermore, to mitigate the forgetting problem, a fraction of the model weights are randomly
reset to their initial values at each iteration to help preserve source knowledge in the long run.

The following are this paper’s main contributions: (1) we suggest a technique for trustworthy
sample selection using future PL information to increase the accuracy of PLs and reduce the issue
of error accumulation. (2) We include a regularization term to punish overconfident output
distributions for preventing the model from being overconfident about the output distribution.
(3) We employ an approach of randomly recovering the model weights to address the forgetting
problem of the model throughout the continual adaptation process, allowing the model to adjust
to the changing environment. Through experiments in various scenarios, we confirm the effec-
tiveness and benefits of our method.

2 Related Work
We divide the discussion on related works based on the different adaptation settings summarized
in Table 1.

Table 1 Characteristics of problem settings that adapt a trained model to a potentially shifted test
domain. “Offline” adaptation assumes access to the entire source or target dataset, whereas
“online” adaptation can automatically predict a single or batch of incoming test samples. UDA,
unsupervised domain adaptatio; TTT, test-time training; and TTA, test-time adaptation.

Setting Source data Target data Training Testing Offline Online Source Acc

Fine-tune No xt ; y t Lðx t ; y t Þ — Yes No Not considered

UDA xs; ys x t Lðx t ; y t Þ þ Lðxs; x t Þ — Yes No Maintained

TTT xs; ys x t Lðx t ; y t Þ þ LðxsÞ Lðx t Þ Yes No Not considered

TTA No x t — Lðx t Þ No Yes Not considered

TTA (ours) No x t — Lðx t Þ No Yes Maintained
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2.1 Unsupervised Domain Adaptation
UDA is a technique that uses a model trained on a data-rich and accurately labeled source domain
to learn an unlabeled target domain by transferring knowledge from the source domain.17 The
most general idea of UDA is to learn a domain-invariant feature to align the target and source
domains by reducing the difference between the domains. Two domains are aligned by choosing
an appropriate difference measure function to mitigate the domain shift between the target and
source domains. Rozantsev et al.18 proposed a two-stream network by minimizing the parameter
difference at each layer between the two networks, one on the source dataset and the other on the
target dataset. Sun et al.19 matched the second-order statistics of the source and target distribu-
tions using a linear transformation. Damodaran et al.20 learned the joint distribution of the source
and target domains using optimal transport. Another method uses adversarial loss to align the
source and target domains, Saito et al.21 proposed a weak global alignment model to reduce the
difference between the source and target domains. The feature distribution22 is considered at
the local category level, and the categories are aligned utilizing an adaptive adversarial loss.
The method23 used entropy minimization for semantic segmentation tasks and presented an
adversarial loss to align the source and target domains.

2.2 Source-Free Domain Adaptation
Unlike UDA, source-free domain adaptation requires a model trained on the source domain and
an unlabeled target domain, not access to the source domain during testing. SHOT24 froze the
classifier of the model obtained by training on the source domain and implicitly aligned the
representation of the target domain to the source hypothesis using information maximization
and self-supervised pseudolabeling. TTT25 proposed test-time training by transforming a single
unlabeled test sample into a self-supervised learning problem that updates model parameters
before making predictions. TENT13 proposes for the first time to update model parameters using
entropy minimization to update model parameters. MEMO26 suggested a straightforward
approach to use various data augmentations to evaluate the data and then reduce the entropy
of the average or marginal output distribution of these different data augmentations. Qiu
et al.27 proposed a method that uses the information in the source model to generate source
incarnation prototypes (i.e., representative features for each source class) that adapt the features
generated for the test data to the source prototypes. Most existing methods use the input test data
to update the source model to improve model performance, but Chen et al.16 proposed to update
the target data using a generative diffusion model to project all test inputs into the source domain,
keeping the model parameters fixed during the testing phase.

2.3 Domain Generalization
Domain generalization aims to improve the performance of a model to unseen domains by learn-
ing the model over multiple visible source domains, thereby achieving out-of-distribution (OOD)
generalization.28 Domain alignment is a popular approach for domain generalization, and its core
idea is also similar to the principle of domain alignment for UDA. Li et al.29 used a maximum
mean difference metric to align distributions across domains and match the aligned distributions
to arbitrary prior distributions through adversarial feature learning. In machine learning, metal-
earning has recently received much attention. The concept of metalearning has been applied to
domain generalization, Li et al.30 proposed to sequentially learn a set of source domains and train
at each step to maximize performance on the following domain.31 MetaNorm is a simple and
effective method for normalization using metalearning. Data augmentation has been one of the
most common methods for training models in machine learning. Zhou et al.32 used a data gen-
erator to generate new pseudodomains to expand the source data and then employed the obtained
pseudodomains and the source data domains for training the model. Xu et al.33 improved the
model’s generalization ability using random convolution as a data augmentation method.

3 Methodology

3.1 Problem Formulation
Assume that we have the training data and the corresponding probability distributions
Ds ¼ fðxs; ysÞgni¼1 ∼ Psðxs; ysÞ, where xs ∈ X is the input and ys ∈ f1; 2; : : : ; Kg is the target
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label; fθ0ðxÞ denotes the model pretrained in the source domain, where θ0 denotes the
model parameter. Without loss of generality, we denote the test data and the corresponding
probability distributions as Dt ¼ fxtgmj¼1 ∼ Pt, where Ds and Dt share the output space, i.e.,
fyig ∼Ds ¼ fyjg ∼Dt. If the training dataset and the test dataset do not satisfy the assumption
of the identical independent distribution, i.e., Ps ≠ Pt. In this case, applying the classifiers
trained only on the source data directly to the test data can become unreliable and lead to per-
formance degradation.

3.2 Self-Training with Future Information
Most earlier research uses the small loss criterion to choose reliable samples while taking ad-
vantage of DNNs’memory. Recent research suggests choosing the correct PLs based on a thresh-
old or confidence criterion10,34 to lessen the detrimental effects of inaccurate PLs. In light of this,
instead of blindly believing the PLs of all samples, we suggest double-checking the sample
selection and only allowing samples where the forward and backward models diverge slightly.
Test-time domain adaptation improves OOD performance by updating the source model with
PLs produced by the source model. Despite this advantage, they lack a mechanism to check
the reliability of the generated sample PLs.

Given the target data xTt and a pretrained model fθt in the source domain, we use the most
commonly used entropy loss as the test time objective function, following TENT and EATA:

EQ-TARGET;temp:intralink-;e001;114;503LtðxTt Þ ¼ −
X
c

y 0
t log y 0

t : (1)

Similar to standard self-training, we use a classifier trained on the source dataset and get a PL
from that classifier:

EQ-TARGET;temp:intralink-;e002;114;445y 0 ¼ argmaxffθtðxTt Þg: (2)

Previous self-training methods choose trustworthy PLs using confidence thresholding or
reweighting for each x in the target dataset.35 PLs are selected with softmax values. Wang
et al.34 used weight-averaged and augmentation-averaged predictions to generate PLs that they
believe are generally more accurate on average. MEMO26 subjects a piece of data from the test
dataset to different data augmentations and uses the average prediction obtained from various
data augmentations as the PL. EATA10 adds entropy reweighting to the prediction results to rely
on samples with more confidence. The primary premise behind TAST’s36 proposal is that under
domain offsets, it is likely that the test data and its closest neighbors in the embedding space will
share the same label. Test-time domain adaptations update the source model using its generated
PLs to enhance performance OOD. However, despite this advantage, they need a technique to
verify the validity of the generated sample PLs.

We design a complementary step with the following insights to improve self-training.
Intuitively, to solve the problem that the model only makes reliable sample selections for the
current input data based on past model states, we propose a new selection strategy that allows
the model to learn from its future information. Figure 1 shows a conceptual diagram of our
approach. The prior technique obtains the PL of the input data at step t using the time step
t − 1 model and then uses this knowledge to choose a trustworthy sample to update the model.
In addition, as opposed to the prior approach, we employ the tþ k-step model and future label
information to assess the reliability of the PL. The model weights at tþ k time step cannot be
employed at the start of the time step t since they rely on the optimized model at t time step.
To overcome this obstacle, we use a virtual update strategy.37 First, the parameters of the model of
t are stored, then the model of the tþ k time step is obtained through a virtual update, and then
the pseudo label of the input data at time t is obtained. Finally, if the model differs slightly
between some samples’ PLs at time steps tþ k and t, depending on these samples, reliable
samples can be created using a specific selection strategy. This time, we apply the gradient to
the realistic weights of the pretrained model.

Since tþ k has no model weight at the time step t, a virtual update strategy is adopted, and
we denote the virtual update model as fθ̂t . The model parameters of the virtual update at time

tþ k are as follows:
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EQ-TARGET;temp:intralink-;e003;117;346θ̂tþk ¼ θ̂tþk−1 − α∇θ̂Lθ̂tþk−1
; (3)

where α is the learning rate, k ¼ f1; 2; 3; : : : g is the number of virtual updates. The final virtual
model is used to create a new PL. The PL of this sample is likely to be reliable if the PL predicted
by the model at time step t matches the outcome anticipated by the model after the k steps of
virtual updating. Finally, an actual update is performed on these samples.

3.3 Confidence Penalization and Model Recovery
Deep neural networks are prone to produce overconfident predictions even though the predicted
categories are far from the true ones.38 Therefore, we use a regularization term Lp to penalize the
confident output distribution and can mitigate the problem of model overconfidence:39

EQ-TARGET;temp:intralink-;e004;117;215Lp ¼ −
1

K
δðpkÞ · log pk; (4)

where δðpkÞ is a coefficient that can be computed by

EQ-TARGET;temp:intralink-;e005;117;170δðpkÞ ¼ max

�
0; τ −

pk

py

�
; (5)

where p denotes the output of the neural network, py denotes the element in p for the label y, and
pk denotes the k’th element of the output result. Here, τ is a hyper-parameter of the confidence
threshold. After introducing the confidence penalty, the final optimization formula for our
method can be formulated as
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Fig. 1 An overview of the proposed method. Given an existing pretrained model f θt for the source
domain, we cache the model parameters f θ̂t at that time. During adaptation, when a batch of target
samples arrives, we use a sample selection strategy to obtain reliable samples, virtual update the
f θ̂t k times to obtain the model f θ̂tþk

and then predict PLs for this batch of samples. We compare the
PL after virtual update k times with the prediction of f θt , if consistent, we consider this sample more
reliable, then use the sample selection strategy and calculate the actual update loss, and then do
the real backpropagation update this time.
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EQ-TARGET;temp:intralink-;e006;114;736L ¼ LtðxtÞ þ λLpðfθðxtÞ; y 0Þ; (6)

where λ is a weighting hyper-parameter.
Although information from future models can be used to improve the quality of pseudo-

labels, the problem of catastrophic forgetting will arise in the case of continual adaptation over
a long period. If the model encounters a significant shift in the domain distribution, it will inevi-
tably make incorrect predictions. If the model is updated on this basis, the problem of error
accumulation will occur, affecting the future adaptability of the model. Hence, to avoid the prob-
lem of inevitably forgetting the model after long-term test domain adaptation, we also introduce a
model recovery strategy.34 By randomly resetting a small number of tensor elements in the train-
able weights to their initial values, the network ensures moderate deviation from the initial source
model during training, effectively circumventing the risk of catastrophic forgetting. This strategy
preserves the model’s stability and generalization capabilities by preventing excessive deviation
from its original state while adapting to new domains:

EQ-TARGET;temp:intralink-;e007;114;574M ∼ BernoulliðpÞ; (7)

EQ-TARGET;temp:intralink-;e008;114;539Wtþ1 ¼ M ⊙ W0 þ ð1 −MÞ ⊙ Wtþ1 (8)

whereW0 denotes the initial weight obtained from the pretraining model,Wt is the model weight
to be updated after t time steps, andM represents a portion of the weight randomly selected from
Wt to return to the initial value.

3.4 Composing with Prior Methods
Our sample selection framework is flexible as a plug-and-play method that can be integrated with
different sample selections or sample weighting strategies, thereby exploiting each individual’s
performance improvements. With our approach, pretrained models already exist and do not need
to be modified or retrained on the source data. Consequently, to investigate the effectiveness of
the method described in this paper, we combine our proposed method with the widely used TTA
models EATA, TENT, and PL.

4 Experiments
We will present our experiments’ datasets, models, and implementation details. Following that,
we will assess our method’s performance in image classification on three benchmark tasks with
continual test-time domain adaptation. In addition, we will evaluate our method’s effectiveness in
a real-world experimental setting, precisely a mixed-domain adaptation experiment (CIFAR10C,
CIFAR100C, and ImageNetC). Finally, we will conduct ablation experiments to demonstrate
the effectiveness of our method.

4.1 Benchmarks and Tasks

4.1.1 Datasets and models

We conducted experiments on three widely used benchmarks for OOD generalization:
CIFAR10C, CIFAR100C, and ImageNetC.40 Each dataset contains 15 types of corruption with
5 levels of severity. To assess the effectiveness of our approach, we compared it to several state-
of-the-art techniques, such as PL, BN Stats Adapt, TENT, EATA, and CoTTA. PL11 uses a pre-
trained classifier to predict the test data and select confident samples of PLs for the classifier to
fine-tune. BN Stats Adapt41 retains the weights of the source model but replaces the statistics of
each BN layer in the source data with the statistics of the target domain of the current iteration.
TENT13 adapts the model by minimizing the entropy of model predictions and updates the nor-
malization statistics and transformation parameters on test samples. EATA10 selects reliable and
nonredundant samples from the test samples for backpropagation, thus improving the efficiency
of model adaptation. CoTTA34 suggests reducing error accumulation using weight-averaged
and augmentation-averaged predictions. SAR42 propose a sharpness-aware and reliable entropy
minimization method. We combine our method with PL, TENT, and EATA in this work.
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4.1.2 Evaluation metrics

We measure the error rate and average error rate on 15 different types with 5 levels of severity on
CIFAR10C, CIFAR100C, and ImageNetC datasets.

4.1.3 Implementation details

For CIFAR10-to-CIFAR10C, we followed the standard implementation of CoTTA, TENT,
and EATA for the CIFAR10C experiments. We use the Adam optimizer with a learning rate of
1 × 10−3 and batch size of 200. The same pretrained model is adopted, which is a WideResNet-
2843 model from the RobustBench benchmark.44 We have made some specific adjustments for
different models and benchmark tests. In our method, we set the virtual update step k to 3, the
hyperparameter τ of the regularization term to 0.2, the trade-off parameter λ to 0.1, and the
probability parameter p to 0.01. For CIFAR100C, we use the pretrained model ResNeXt-2945

from the RobustBench benchmark, and other hyperparameters are the same as those used for
CIFAR10C. In the case of ImageNetC, we use SGD as the update rule with a momentum of 0.9,
a batch size of 64, and a learning rate of 0.0025. The pretraining model we use is the standard
pretrained ResNet50 model in RobustBench.44 We set the virtual update step k to 1, the hyper-
parameter τ of the regularization term to 0.1, the tradeoff parameter λ to 0.1, and the probability
parameter p to 0.001. For PL and TENT, the normalization statistics and transformation param-
eters are updated on test samples. The confidence threshold in PL is set to 0.4, which can give
acceptable results in most cases. The hyperparameters for CoTTA are the same as in the original
paper. To ensure optimal performance, EATA uses specific thresholds and parameters. The
entropy constant threshold is set to 0.4 × ln K (K is the number of task classes), and the non-
redundant threshold is set to 0.4/0.05 for CIFAR/ImageNet experiments. Additionally, for
CIFAR10, the trade-off parameter is set to 1, and for CIFAR100 and ImageNet, the value is
set to 2000.

4.2 Image Corruption

4.2.1 Experiments on CIFAR10-to-CIFAR10C

Table 2 shows the results for CIFAR10C. We compare our method with the source-only baseline
and BN adapt, PL, TENT, CoTTA, and EATA. Directly applying the pretrained model to the
target dataset with a domain shift from the source dataset, the error rate is higher than that
after domain adaptation, indicating that domain adaptation is essential and effective. Our method,
when combined with other domain adaptation methods, significantly improves accuracy.
Specifically, we observed gains of 1.08% with PL, 2.49% with TENT, and 0.6% with EATA.
The experimental results show that the integration of many approaches, including the one
suggested in this work, does not produce a significant improvement and may even significantly
underperform when compared to the baseline during the early stages of adaptation. However,
the strategy described in this study shows a distinct advantage over the original methodology
when the adaptation process moves into later stages. This benefit arises from its capacity to
efficiently reduce mistake accumulation by utilizing the direction of upcoming model weights.
Essentially, the suggested approach continually minimizes error propagation during the extended
adaptation process, demonstrating its superiority step by step.

4.2.2 Experiments on CIFAR100-to-CIFAR100C

To further demonstrate the effectiveness of the proposed method, we evaluate it on the compre-
hensive CIFAR100-to-CIFAR100C task. The experimental results are collected in Table 3.
TENT performs admirably for the initial few corruptions. However, under continual long-term
adaptation, TENT exhibits a marked decline in the performance, which suggests that it experi-
ences error accumulation and catastrophic forgetting. After combining TENTwith our proposed
method, the effect is significantly improved and even higher than the original EATA method. Our
method produces more accurate labels by carefully choosing more trustworthy samples and com-
paring them with future models. Error accumulation is lessened by updating the model using
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Table 2 Classification error rate (%) for the standard CIFAR10-to-CIFAR10C online continual
TTA task. All results are evaluated on the WRN-28-10 architecture with the largest corruption
severity level 5. The bold number indicates the best result.

Method Source BN Ada CoTTA SAR PL
PL +
ours TENT

TENT +
ours EATA

EATA +
ours

Gauss. 72.32 28.07 24.25 27.71 26.74 27.79 24.79 25.73 24.87 25.43

Shot 65.75 26.12 22.57 24.92 22.62 22.88 20.51 21.8 19.65 20.4

Impul. 72.93 36.26 27.46 34.07 31.47 31.15 28.53 30.88 27.75 29.34

Defoc. 46.99 12.81 12.09 12.65 13.13 12.68 14.43 12.06 12.87 12.05

Glass 54.33 35.28 27.96 34.88 33.23 31.54 31.38 31.25 29.56 30.60

Motion 34.76 14.17 13.25 13.90 15.16 14.66 16.02 13.51 15.22 13.34

Zoom 42.01 12.11 10.81 12.09 13.32 12.45 14.06 11.49 12.68 11.13

Snow 25.13 17.27 15.74 17.15 17.75 16.59 19.93 15.89 16.72 15.30

Frost 41.32 17.39 14.78 17.11 17.17 16.11 19.66 16.14 15.55 15.47

Fog 26.01 15.25 13.35 14.90 15.87 15.24 18.9 14.19 14.89 13.06

Brit. 9.30 8.38 8.10 8.39 9.38 9.43 11.84 8.31 10.11 7.88

Contr. 46.64 12.64 11.51 12.64 12.46 11.91 15.94 11.51 13.90 11.03

Elastic 26.6 23.76 19.23 23.56 23.67 20.77 25.79 21.95 21.94 22.05

Pixel 58.44 19.67 13.85 19.00 19.26 16.2 22.54 16.75 16.93 16.38

JPEG 30.28 27.30 18.03 26.28 26.01 21.71 27.13 22.52 21.80 22.22

Avg 43.52 20.43 16.87 19.95 19.82 18.74 20.76 18.27 18.30 17.71

Table 3 Classification error rate (%) for the standard CIFAR100-to-CIFAR100C online continual
TTA task. All results are evaluated on the ResNeXt-29 architecture with the largest corruption
severity level 5. The bold number indicates the best result.

Method Source BN Ada CoTTA SAR PL
PL +
ours TENT

TENT +
ours EATA

EATA +
ours

Gauss. 73 42.12 40.42 39.90 38.10 39.50 37.16 37.28 37.03 37.96

Shot 68 40.66 38.09 34.78 35.04 36.30 35.76 34.58 34.21 34.09

Impul. 39.35 42.72 40.25 36.63 38.05 37.36 41.64 35.51 35.89 33.72

Defoc. 29.32 27.64 27.41 26.17 31.01 27.76 37.81 27.06 29.23 25.61

Glass 54.11 41.82 38.35 37.12 40.58 39.07 51.12 38.01 39.66 36.55

Motion 30.82 29.73 28.48 28.19 33.76 29.9 48.45 29.54 32.41 28.18

Zoom 28.75 27.87 26.79 25.92 32.21 27.72 49.20 26.84 29.92 25.72

Snow 39.49 34.9 33.6 31.8 38.13 32.13 59.38 31.72 34.97 30.3

Frost 46.81 35.01 32.48 30.46 40.46 31.84 66.17 31.79 35.47 29.95

Fog 50.28 41.51 40.71 35.68 47.29 35.94 73.58 34.75 38.46 32.36

Brit. 29.53 26.52 25.32 25.24 41.55 25.77 73.87 25.91 30.49 24.24

Contr. 55.10 30.31 27.46 27.97 52.38 29.23 84.31 28.96 33.30 26.82

Elastic 37.23 35.67 32.93 31.75 55.07 35.24 88.99 35.41 37.52 32.61

Pixel 74.68 32.94 28.39 29.15 54.56 30.89 90.97 32.09 33.75 28.47

JPEG 41.23 41.16 33.91 37.22 64.35 38.18 94.2 41.05 43.12 36.29

Avg 46.45 35.37 32.97 31.87 42.84 33.15 62.17 32.70 35.03 30.86
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these chosen examples. The current batch of data frequently influences later data in typical model
updating processes, which causes a slow accumulation of mistakes. The influence on subsequent
target data during weight updating will, however, be greatly minimized if more precise samples
and PLs can be acquired during the updating phase, increasing the model’s prediction accuracy.
In conclusion, our approach improves model prediction performance by streamlining the sample
selection and label generation procedures, increasing the accuracy of model updates. Overall,
on the CIFAR100C dataset, our proposed method improved the PL by 9.69% and the TENT by
29.47%, while the EATA enhanced by 4.17% after being combined with our method.

4.2.3 Experiments on ImageNet-to-ImageNetC

Compared to CIFAR10C and CIFAR100C, adaptation to the ImageNet-C dataset is considerably
more challenging, and even the previous methods suffer from severe performance degradation.
The experimental results are summarized in Table 4. As can be seen, the proposed method
consistently improves the previous adaptation approaches, PL (gain 6.36%) and TENT (gain
31.23%). Due to the pretrained model’s abysmal performance on severe corruptions, evident
from the source method’s extremely low accuracy, our approach does not perform as well on
the ImageNetC dataset as on CIFAR10C and CIFAR100C. Even though our strategy can reduce
the accumulation of errors, it inevitably leads to incorrect predictions when the confidence in
the model itself is relatively low. Although their labels are expected to be the same before and
after, they still obtain inaccurate results, and the results do not improve.

4.3 Mixed Domain Adaptation on Corruption Benchmark
In actuality, it is more likely that a batch of entering test samples will have various domain shift
distributions than they will all have the same distribution as in the prior continual domain

Table 4 Classification accuracy (%) for the standard ImageNet-to-ImageNetC online continual
TTA task. All results are evaluated on the ResNet-50 architecture with the largest corruption
severity level 5.

Method Source BN Ada CoTTA SAR PL
PL +
ours TENT

TENT +
ours EATA

EATA +
ours

Gauss. 0.11 14.56 16.12 25.70 22.30 20.52 27.27 26.53 33.63 32.85

Shot 0.11 5.30 19.51 34.48 30.06 24.83 32.59 32.43 39.28 37.89

Impul. 0.12 15.14 21.92 34.74 30.98 25.39 29.52 31.49 38.25 36.41

Defoc. 0.16 14.40 19.51 25.60 22.00 21.86 16.32 24.85 32.84 32.25

Glass 0.14 14.76 20.96 29.95 22.74 22.62 7.53 23.75 34.14 32.97

Motion 0.15 25.66 30.94 36.30 29.31 34.61 3.34 33.47 45.32 45.18

Zoom 0.21 37.68 40.60 44.67 35.87 44.41 1.76 44.78 51.64 51.58

Snow 0.11 33.41 32.70 37.92 29.74 38.80 0.90 40.60 49.20 49.16

Frost 0.15 32.36 32.52 38.56 29.67 37.52 0.60 37.20 44.64 44.52

Fog 0.35 46.37 45.25 48.37 36.28 51.64 0.64 52.81 58.11 57.86

Brit. 0.15 64.53 56.91 61.76 49.27 65.54 0.83 64.64 66.38 66.88

Contr. 7.09 15.07 21.75 33.34 22.35 26.15 0.40 26.56 43.31 42.25

Elastic 0.11 42.77 42.45 50.81 33.54 47.43 0.61 48.77 55.91 56.06

Pixel 0.13 47.75 46.07 54.34 37.3 52.87 0.63 54.72 58.90 58.80

JPEG 0.10 38.73 39.95 50.37 32.55 45.43 0.61 50.49 54.32 54.08

Avg 0.61 30.57 32.48 40.46 30.94 37.30 8.24 39.47 47.06 46.70
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adaptation experiments, which were all focused on the same domain distribution shift problem.
We use different corruption types to simulate mixed domain adaptation experiments with multi-
ple domain distribution shifts. We use the CIFAR10C, CIFAR100C, and ImageNetC, the batch
size is 64, and other parameters are the same as in previous experiments. We evaluate different
methods on a mixture of 15 corruption types at different severity levels (5 and 3). As shown in
Table 5, we observe that the results of mixed domain adaptation on the three datasets are much
worse than those of a single domain adaptation, particularly on ImageNetC, where many
methods fail. In the mixed domain adaption context, these strategies are prone to failure since
they update the model based on the current output and forecast the next batch of data distribution.
Due to continual domain adaptation, the model may suffer from strong distribution shifts, leading
to incorrect PL predictions. In this case, makes self-training exacerbates wrong predictions. The
model might not recover after encountering hard-to-adaptation examples, even with new data
having no significant domain shift.

4.4 Ablation Study
We conduct an ablation study to see how important each part of our approach is. The results are
listed in Table 6. Our strategy has three parts: a self-training method, an overconfidence penalty
function, and model restoration. The hyperparameters were the same as our previous work on the
CIFAR100-to-CIFAR100C task. We have evaluated each of them based on PL and found that
our method significantly reduces the error rate compared to PL. Using self-training with future
information reduces the error rate on CIFAR100C from 42.84% to 39.67%, showing that our
method can improve PL accuracy and reduce error accumulation. We further improve the accu-
racy with regularization, achieving a lower error rate of 36.13% on CIFAR100C. Although our
method improves the quality of the pseudo-labels and minimizes the error rate, the neural net-
work may still make wrong predictions in some cases where there is much noise. In this case,
random weight restoration of pretrained models can help. We reduce the error rate of PL on the
CIFAR100C dataset from 36.13% to 33.15%.

Using the self-training framework improves PL accuracy, but over-reliance on these trust-
worthy PLs can cause overfitting of the model. We include a regularization term in order to
address this problem. In the meantime, the model’s performance on source data may gradually
deteriorate as it gradually adjusts to target data. This is due to the possibility of a growing bias
in the model parameters throughout the continuous update process, which ignores data from

Table 5 We conduct mixed domain adaptation on CIFAR10C, CIFAR100C, and ImageNetC
datasets. Average accuracy (%) mixed domain with severity level 5 and level 3.

Method

CIFAR10C CIFAR100C ImageNetC

Level 5 Level 3 Level 5 Level 3 Level 5 Level 3

Source 37.41 43.64 19.19 20.42 0.61 1.47

BN Ada 65.97 78.96 52.52 64.24 17.66 38.67

CoTTA 57.7 78.42 28.64 47.10 17.76 44.93

SAR 68.78 80.61 45.87 63.02 20.63 50.91

PL 67.35 81.25 53.24 68.69 4.2 50.03

PL + ours 66.10 79.02 53.49 64.73 7.91 45

TENT 41.35 68.77 6.38 16.22 2.06 39.33

TENT + ours 64.28 80.93 31.36 58.93 3.74 47.64

EATA 71.97 83.48 30.50 50.44 26.70 51.5

EATA + ours 67.71 80.09 55.10 67.10 30.30 50.48
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the source domain in favor of the target domain. We use a straightforward model parameter
restoration technique to preserve the accuracy of the model on the source data domain.
Using this method, the model can adapt to the target domain and maintain its performance
on the source domain, striking a balance between the two. Our self-training methodology pre-
vents overfitting and source domain performance degradation while achieving significant
improvements in PL accuracy by combining regularization and model parameter restoration
techniques.

4.4.1 Effect of the serial exploration steps k

k is the number of virtual updates. The experimental results are summarized in Table 7. We
combined our approaches with TENT and EATA methods. We performed ablation experiments

Table 6 Effects of components in proposed method (the top is the result of PL). We use the
CIFAR100C dataset with ResNeXt-29 as the backbone network to obtain error rate (%) results
for 15 corruption cases with a severity level of 5.

Future Loss Recover Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow

38.10 35.04 38.05 31.01 40.58 33.76 32.21 38.13

✓ 37.82 34.14 37.58 30.48 41.33 33.37 31.66 37.27

✓ ✓ 39.79 35.81 38.24 29.92 41.46 33.45 31.58 35.96

✓ ✓ ✓ 39.50 36.30 37.36 27.76 39.07 29.90 27.72 32.13

Frost Fog Brit. Contr. Elastic Pixel JPEG Avg

40.46 47.29 41.55 52.38 55.07 54.56 64.35 42.84

✓ 39.45 43.59 36.31 41.93 47 46.60 56.50 39.67

✓ ✓ 35.56 39.96 31.65 33.59 38.59 34.51 41.92 36.13

✓ ✓ ✓ 31.84 35.94 25.77 29.23 35.24 30.89 38.18 33.15

Table 7 Effect of the serial exploration steps k . We tested the TENT and EATA methods on the
CIFAR10C and CIFAR100C datasets and calculated the average error rate (%) under different k
values. The triangles indicate howmuch performance has been improved (howmuch the error rate
has been reduced) compared to the original method.

Method

CIFAR10C CIFAR100C

k Avg error Δ k Avg error Δ

TENT — 27.59 — — 42.84 —

TENT + ours 1 18.92 8.67 1 33.17 9.67

TENT + ours 2 19.08 8.51 2 32.96 9.88

TENT + ours 3 18.84 8.75 3 32.79 10.05

TENT + ours 4 19.15 8.44 4 34.24 8.6

EATA — 20.21 — — 41.93 —

EATA + ours 1 18.33 1.88 1 31.55 10.38

EATA + ours 2 18.48 1.73 2 31.5 10.43

EATA + ours 3 18.4 1.81 3 31.66 10.27

EATA + ours 4 18.5 1.71 4 31.83 10.1
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on one of the essential parameters, k. We separately tested the effect of different k values on
different methods. We find that when k ¼ 3, our method can achieve significant performance
improvement on both datasets, while the performance improvement becomes insignificant when
the value of k continues to increase. Table 7 shows that k ¼ 3 is an appropriate choice to balance
the robustness and efficiency of the model.

4.4.2 Effect of the λ

We evaluate our proposed method with different λ, chosen from ½0.05; 0.3�. Figure 2 provides the
results of ablation experiments on the CIFAR100C dataset. This figure shows that λ has a slight
impact on the experimental results; too large or too small will hinder the performance of the
model. Its size causes the loss to increase, more high-entropy samples are generated, and more
samples are to be filtered out, resulting in a decline in generalization performance. Therefore,
we choose to set λ to 0.1.

4.5 More Discussions

4.5.1 Impact of batch size

We conducted an evaluation of various TTA methods across different batch sizes, and the exper-
imental outcomes are presented in Tables 8 and 9. The results indicate that the performance of
PL, EATA, and TENT is affected by the batch size to varying degrees, with their performance
declining considerably as the batch size decreases. Since these three methods update the param-
eters on the BN layer, the BN layer is vulnerable to batch size, and a small number of samples
cannot accurately estimate the statistical information. Therefore, these methods are inferior to
those without domain adaptation at small batch sizes. COTTA to update all parameters is more
robust than the BNmethod. Our approach enhances the performance of EATA, PL, and TENT by
combining it with the previous methods, proving its robustness to changes in test batch size.
When facing the challenges of small batch sizes, we can adopt several strategies to enhance the
effectiveness of BN, such as accumulating sufficient samples to form larger batches before updat-
ing and skillfully incorporating statistical information from both the source domain and test
batches. However, this remains a topic worthy of further exploration. In the future, we will con-
tinue to dedicate ourselves to researching relevant strategies and optimizing and refining BN
techniques for small batch sizes.

Fig. 2 Effect of the λ. We performed an experiment using the CIFAR100C dataset, set the severity
level to 5, and used the same settings as the continual CIFAR100C experiment to get the average
error rate. According to experimental findings, our technique can produce superior results in vari-
ous λ values.
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4.5.2 Comparisons under different severity levels on CIFAR100C

To evaluate the performance of our method on the continual TTA CIFAR100-to-CIFAR100C
experimental task, we give not only the highest severity results but also the results of different
severity levels. In this section, we discuss the impact of our proposed method on the
CIFAR100C dataset at various severity levels. Figure 3 shows that the TENT’s prediction error
rate gradually increases when it encounters varying degrees of distribution shift. This indicates
that it has suffered from error accumulation due to continual TTA and the severe consequences
of catastrophic forgetting. Figure 4 demonstrates that the EATA performs better than the TENT
at different severity levels by reducing the forgetting problem with the fisher regularizer and
improving the quality of PLs. Our solution, based on EATA, also incorporates future infor-
mation to improve the correctness of PLs and resolves the forgetting problem by randomly
restoring the model weight, allowing it to perform at its best over the full range of severity
levels.

Table 9 Average error rates (%) for different batch sizes on the CIFAR100 to CIFAR100C online
continual TTA task. All results are based on the ResNeXt-29 architecture with the largest severity 5
corruption.

Method 200 64 32 16 8 4 Avg

Source 46.45 46.45 46.45 46.45 46.45 46.45 46.45

BN Ada 35.37 36.22 37.28 39.46 44.07 49.69 40.34

CoTTA 32.97 35.73 38.42 47.41 66.78 92.19 52.25

SAR 31.87 34.51 50.87 66.22 83.30 75.28 57.01

PL 42.84 80.75 87.88 93.94 96.69 98.29 83.4

PL + ours 33.15 34.27 35.56 37.57 42.5 61.27 40.72

TENT 62.17 84.6 92.75 95.11 97.83 98.66 88.51

TENT + ours 32.7 32.79 34.24 37.11 46.58 89.33 45.45

EATA 35.03 41.93 76.68 89.38 94.8 97.04 72.47

EATA + ours 30.86 31.66 33.18 35.83 41.83 54.11 37.91

Table 8 Average error rates (%) for different batch sizes on the CIFAR10 to CIFAR10C online
continual TTA task. All results are based on the WRN-28-10 architecture with the largest severity
of five corruptions.

Method 200 64 32 16 8 4 Avg

Source 43.52 43.52 43.52 43.52 43.52 43.52 43.52

BN Ada 20.43 20.92 21.69 22.93 26.37 31.61 23.99

CoTTA 16.87 17.65 22.18 32.25 60.85 92.19 40.33

SAR 19.95 19.55 19.88 20.88 24.59 35.72 23.43

PL 19.82 26.28 41.74 59.61 78.67 86.98 52.18

PL + ours 18.74 20.24 22.46 23.02 26.08 31.6 23.69

TENT 20.76 27.59 39.48 63.85 79.53 87.39 53.1

TENT + ours 18.27 18.84 20.03 21.8 25.7 31.47 22.68

EATA 18.3 20.21 23.29 36.37 41.65 61.35 33.52

EATA + ours 17.71 18.4 19.4 21.31 25.4 31.19 22.23
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4.5.3 Cost analysis of model training

The cost analysis of model training is presented in Table 10. We utilize the pretrained ResNeXt-
29 model from the RobustBench benchmark and employ the CIFAR100C dataset for our experi-
ments. The model parameter we use is k ¼ 3. It is noteworthy that the computational complexity,
measured in terms of FLOPs, scales linearly with the value of k. Additionally, storing the original
pretrained model and performing virtual updates necessitates a considerable amount of storage
space.

4.5.4 Demonstration of preventing forgetting

In this part, we delve into the capability of our proposed method to maintain accuracy on the
source dataset during TTA. The experiments are conducted on the CIFAR100C dataset. We
specifically look at the model’s performance changes before and after adapting to new data,
particularly the accuracy on the original CIFAR100 validation set. This allows us to assess how
effectively the model retains the knowledge from the source data while incorporating new infor-
mation. The experimental procedure is as follows: first, we adapt the model to an OOD dataset.
Subsequently, we evaluate the accuracy of the adjusted model when handling uncontaminated
(i.e., “clean”) data. This process is repeated five times consecutively, without resetting the
model’s parameters, to mimic continual learning scenarios in real-world applications.

Fig. 4 Combine our method with EATA and compare their average error rates on severity
levels 1 to 4 on the CIFAR100C dataset.

Fig. 3 Combine our method with TENT and compare their average error rates on severity levels 1
to 4 on the CIFAR100C dataset.
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The experimental results from Table 11 show that our method significantly outperforms PL
and EATA in terms of accuracy when dealing with OOD data. More importantly, even after
adapting to OOD data, the model’s accuracy on the source dataset remains comparable to that
of the initial model, providing compelling evidence of the effectiveness of our approach.
Specifically, after the first round of adaptation, the accuracy of the PL method on both clean
and corrupted data rapidly declines (until reaching 0%), indicating poor stability in lifelong adap-
tation. In contrast, while the EATA method maintains some level of accuracy in the first two
rounds, its performance also deteriorates significantly as the adaptation process progresses.
Our method, on the other hand, demonstrates consistent stability throughout the entire lifelong
adaptation process, achieving high accuracy on corrupted data while maintaining accuracy on
clean data close to that of the model without any OOD adaptation (i.e., the original accuracy).
These findings strongly suggest the superiority of our method in overcoming the forgetting of
source data.

5 Conclusion
In this paper, we propose a self-training framework that can effectively boost the performance of
pretrained models even when there is a domain shift. Although previous methods are effective,
their performance is limited by the quality of the PLs generated by the pretrained model and
prone to error accumulation. Our proposed approach addresses this issue by improving the qual-
ity of the PLs through consistency in the current and future states and by adding a regularization

Table 10 Cost analysis of model training.

Method Flops (M) Param. (M) Acc

Source 1085.7 6.9 53.55

CoTTA 37999.5 20.7 67.03

PL 1085.7 6.9 57.16

PL + ours 5428.5 6.9 66.85

TENT 1085.7 6.9 37.83

TENT + ours 5428.5 6.9 67.3

EATA 1085.7 6.9 34.97

EATA + ours 5428.5 6.9 69.14

Table 11 Online continual TTA task. To comprehensively evaluate the long-term adaptation
performance of the model, we are conducting a series of five consecutive assessments. In each
assessment, the model experiences an adaptation process to both OOD data and the clean data-
set. We meticulously record the model’s accuracy (%) on the corrupted test sets as well as its
accuracy (%) on the in-distribution (ID) clean datasets following OOD adaptation, providing a
thorough analysis of its performance throughout the continual adaptation process.

Round 1 2 3 4 5

Method OOD Clean OOD Clean OOD Clean OOD Clean OOD Clean

Source 53.55 78.9 53.55 78.9 53.55 78.9 53.55 78.9 53.55 78.9

PL 57.16 41.76 12.1 4.02 1.92 1.73 1.42 1.23 1.31 1.54

PL + ours 66.52 75.33 66.57 75.91 66.75 74.98 66.7 75.49 66.79 75.4

EATA 65.1 70.98 58.18 62.54 47.52 51.85 39.43 42.07 22.51 12.82

EATA + ours 68.61 75.63 67.2 75.8 67.2 75.34 67.28 75.79 67.24 75.57
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term to penalize confident output distributions. Our method is practical and can be combined
with various TTA methods (TENT, EATA, and PL), and the results demonstrate the versatility of
our approach across different datasets and scenarios.
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