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Abstract. In recent years, single image super-resolution (SISR) reconstruction
models based on convolutional neural networks (CNNs) have shown remarkable
visual effects and reconstruction accuracy. However, the abundance number of
parameters and relatively slow execution speed make it challenging to deploy
these models on devices with limited memory and processing power. To address
this challenge, we propose a Contextual Feature Modulation Network, denoted
as CFMN, for efficient SISR tasks in this paper. This model successfully reduces
model size and computational burdenwhilemaintaining high-quality image recon-
struction. The proposed CFMN consists of a Multi-scale Feature Spatial Modu-
lation (MFSM) and a Channel Attention Fusion Module (CAFM). Specifically,
the MFSM replaces the traditional attention mechanism with a spatial modula-
tion strategy. This module adaptively selects contextual feature representations
at various scales and granularities through a multi-scale mechanism and a gated
matrix, modulating the input features in the spatial dimension. Another core mod-
ule CAFM complementarily extracts local contextual information and incorpo-
rates the Squeeze-and-Excitation Block to capture inter-channel dependencies.
It effectively combines features from various channels through feature fusion,
enhancing the network’s ability to perceive image details. The performance anal-
ysis demonstrates that the proposed CFMNeffectively balancesmodel complexity
and performance.
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1 Introduction

SISR aims to extract feature information from low-resolution (LR) images for recon-
structing high-resolution (HR) images. Following the pioneering work of SRCNN [1],
CNN-based SISR models have consistently exhibited superior performance. With the
continuous development of CNNs, the scale of network models has gradually increased.
In VDSR [2], the SR network is first deepened to 20 layers. EDSR [3] model architecture
surpasses 60 layers with approximately 43M parameters. Subsequently, RDN [4] and
RCAN [5] further expand the network depth to over 100 layers and even over 400 layers.
The primary trend presented by these models is to further enhance the SR performance
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by adding convolutional layers. However, convolutional layers also introduce excessive
computational costs and storage requirements, limiting applications on mobile devices.
In recent years, the emergence of Visual Transformers (ViTs) [6–8] has had a profound
impact on the field of image super-resolution. Thanks to its unique self-attention mecha-
nism, which captures global image dependencies, Transformer has stronger capabilities
for recovering complex textures and details. However, deploying a self-attention module
on devices is challenging because of the high computational cost.

Fig. 1. Comparison of the trade-off between PSNR performance and model complexity on the
Set5 dataset for × 2 SR

To address the issue above, we propose a Contextual Feature Modulation Net-
work, namely CFMN. This network consists of Multi-scale Feature Spatial Modulation
(MFSM) and Channel Attention FusionModule (CAFM), aiming tomaintain the quality
of reconstructed images while reducing model parameters and computational costs. As
shown in Fig. 1, we find that the CFMN achieves a better balance between SR perfor-
mance and model complexity. Inspired by FocalNet [9], we adopt a spatial modulation
strategy in the design of MFSM to replace the traditional attention mechanism. The
module adaptively selects the representations of contextual features at different granu-
larities, enabling dynamic integration of both global and local contextual information.
Additionally, it employs a multi-scale approach to deeply explore rich feature informa-
tion from images at various scales. Another module CAFM complementarily extracts
local information and performs feature fusion along the channel dimension. To further
model the dependencies among channels, this module incorporates the SE Block [10],
enabling the network to focus on themost significant features for the reconstruction task.
The following summarizes our contributions:

• We design a lightweight attention module as an alternative to the self-attention mod-
ule, ensuring comparable performance while utilizing minimal additional parameters
and computational resources.

• We propose a channel feature fusion module to encode local contextual information
and adjust channel weights.
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• Our model is evaluated on multiple benchmark datasets, indicating that it effec-
tively maintains image SR performance with lower computational cost and fewer
parameters.

2 Related Work

2.1 Deep Learning-Based Image Super-Resolution

Deep learning-based methods have become the dominant approach in SISR due to their
powerful representation and fitting capabilities. The pioneering SRCNN [1] introduces
a three-layer CNN to acquire the relationship between HR and LR images and signifi-
cantly improve performance compared to conventional methods. Subsequently, VDSR
[2] and EDSR [3] capitalize on deeper information through a very deep and wide back-
bone combined with residual learning. RCAN [5] extends the backbone into over 400
layers based on channel attention and residual in residual to further exploit intermediate
features. Most recently, more and more researchers have paid attention to Vision Trans-
formers [6, 7] due to their ability to capture long-range dependence of images. Many
Transformer-based methods have emerged for image restoration [8, 11, 12], advancing
state-of-the-art performance. A significant pre-trained model known as IPT [6], based
on the Transformer architecture, is employed for super-resolution tasks. Building upon
the Swin Transformer [13], SwinIR [8] executes self-attention within a localized win-
dow during feature extraction, yielding remarkable outcomes. Although these networks
attain state-of-the-art reconstruction accuracy, the high computational cost and memory
footprint limit their applications on resource-constrained devices.

2.2 Efficient Image Super-Resolution

Efficient ImageSuper-Resolution aims to decrease the computational cost and the param-
eter count of the SR networks while improving inference speed and maintaining high
performance. IMDN [14] employs a progressive feature distillation strategy to gradually
compress features, improving the efficiency of the model. PAN [15] obtains the attention
map with only a 3 × 3 convolution and also introduces self-calibrating convolutions to
exploit long-distance dependencies. LAPAR [16] performs linear coefficient regression
tasks on the predefined filter dictionary, achieving state-of-the-art results with fewer
model parameters and MultiAdds. ShuffleMixer [17] introduces the large kernel convo-
lution into the lightweight SR network. In recent related research, model compression
and acceleration techniques have been introduced to image super-resolution tasks.Wang
et al. [18] propose the SMSR network to learn sparse masks to locate and skip redundant
computations, accelerating the inference process. Shen et al. [19] present a joint opera-
tion and attention block search algorithm for SR, aiming to create an efficient network
and enhance feature representation. Zhang et al. [20] propose structural regularization
pruning, aligning the positions of pruned filters across different layers, efficiently elim-
inating redundant filters. Although the aforementioned methods above have progressed
in various efficiency aspects, our goal is to further strike a balance between achieving
optimal model efficiency and maintaining SR performance.
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3 Proposed Method

3.1 Network Architecture

... ...

1

Fig. 2. The overall architecture of the CFMN

As depicted in Fig. 2, the whole architecture contains three components including
a shallow feature extraction module Ms, a deep feature extraction module Md utilizing
Feature Fusion Modules (FFMs), and an efficient high-resolution image reconstruction
module Mr . Given an input image ILR ∈ R

H×W×3, with dimensions denoted by H and
W , the Ms employs a simple 3×3 convolution layer to convert ILR into a shallow feature
map. Then, this feature map is sent to cascading FFMs for generating deep features.
Finally, the Mr aggregates both low-frequency and high-frequency features through a
global residual connection to predict the HR image ISR ∈ R

rH×rW×3, where r is a scale
factor. The Mr consists of a 3 × 3 convolution layer and a sub-pixel convolution [21].

3.2 Multi-scale Feature Spatial Modulation

Most existing models [5, 8, 11, 12] typically employ attention mechanisms to enable
convolutional neural networks to focus on critical information. Commonly used atten-
tion mechanisms include Channel Attention (CA) [10] and Self-attention (SA) [7, 8,
13]. The former is limited in capturing long-range dependencies, while the latter sup-
ports global interactions within an image and plays a crucial role in the success of the
Vision Transformer [7]. However, the high algorithmic complexity of the self-attention
module has consistently been a crucial concern for researchers. Therefore, we present a
lightweight module as an alternative for modeling long-range dependencies by learning
global contextual features. This model combines a multi-scale mechanism and a gating
mechanism to dynamically fuse feature information at different scales and granularities.
This fusion strategy enhances the network’s comprehension of complex image structures
by increasing feature diversity.

Multi-scaleMechanism. As shown in Fig. 3, given the input featureX ∈ R
H×W×C , we

initially divide the input features evenly into four parts based on the channel dimension
to reduce model complexity and learn attention maps at multiple scales. These four parts
undergo downsampling through a max pooling layer and are then fed into Spatial Modu-
lations to generate output. The generated outputs are subsequently fused and normalized,
resulting in the final estimated attention map X

∧

that focuses on important regions and
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Fig. 3. The architecture of the MSFM

details of the original feature map. In the final step, X
∧

is multiplied element-wise with
the input X to obtain the modulated feature map Xout :

X0,X1,X2,X3 = Split(X )

X̂0 = SM(X0)

X̂i =↑2i
(
SM

( ↓2i (Xi)
))

, 1 ≤ i ≤ 3
X̂ = Conv1×1

(
Concat

([
X̂0, X̂1, X̂2, X̂3

]))

Xout = GELU
(
X̂

) � X̂

(1)

where Split(·) represents the channel split operation, SM(·) is Spatial Attention Modu-
lation, ↓2i (·) and ↑2i (·) represents upsampling and downsampling of the input features,
Concat(·) denotes the concatenation operation, Conv1×1 is a 1 × 1 convolution and
GELU(·) stands for the activation function [22].

Spatial Modulation. As shown in Fig. 4, spatial modulation aggregates the attention
map at various granularities to generate a modulator. In detail, given the input feature
X ∈ R

H×W×C and the number of layers L, the feature undergoes a linear layer to
expand the channel count to 2C+L+2. Subsequently, it is partitioned along the channel
dimension into Query ∈ R

H×W×C ,Context ∈ R
H×W×C , and Gate ∈ R

H×W×(L+2). It
can be expressed by:

Query,Context,Gate = Split(Linear(X )) (2)

where Linear(·) represents a linear layer. The Context gradually acquires broader
contextual features through a sequence of L depth-wise convolutions and a global

average pooling layer. At level l ∈ {1, · · · ,L}, the Contextl is obtained by:

Contextl = GELU(DWConvk×k(Contextl−1)) (3)

where k = 2× l + 1, DWConvk×k(·) represents a depth-wise convolution with a kernel
size of k × k. Then, the ContextL is fed into an average pooling layer to capture global
contextual dependencies Contextg by:

Contextg = GELU( AvgPool(ContextL)) (4)
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Fig. 4. The architecture of spatial modulation. The level is set to 3.

where AvgPool(·) denotes a global average pooling layer. However, effectively integrat-
ing these contextual features at different granularities poses a challenge. To address this,
an average contextual feature Contextavg is introduced to serve as a buffer during the
fusion process. It can be written as follows:

Contextavg = 1

L

L∑

l=1

Contextl (5)

In addition, a gating mechanism is introduced to dynamically integrate features,
resulting in the contextual feature denoted as X

∧

:

X̂ =
L∑

l=1

(Gatel � Contextl) + GateL+1 � Contextg + GateL+2 � Contextavg (6)

X̂ = Conv1×1
(
X̂

)
(7)

where Gatel ∈ R
H×W×1 refers to the l-th layer of the Gate, � is the element-wise

product. After obtaining the modulator X
∧

, it is then applied to adjust Query through
element-wise multiplication. Then a 1 × 1 convolution is employed for cross-channel
interaction. The final output Xout is derived by:

Xout = Dropout
(
Conv1×1

(
X̂ � Query

))
(8)

where Dropout(·) is a regularization layer.

3.3 Channel Attention Fusion Module

The proposed MFSM mainly focuses on the extraction and utilization of global con-
textual features, effectively integrating global information of the image through spatial
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modulation. However, a significant limitation of this module is the lack of an atten-
tion mechanism in the channel dimension, which partly restricts the comprehensive
utilization of image features. To address this limitation and extract complementary local
features, we propose a Channel Attention Fusion Module (CAFM) based on FMBConv
[23]. Since BatchNorm [24] is not suitable for image super-resolution tasks. Therefore,
we substitute BatchNorm with LayerNorm [25] and move it to the front of the module,
which improves the stability of model training. As illustrated in Fig. 5, the proposed
CAFM comprises a 3 × 3 convolution, an SE Block [10], and a 1 × 1 convolution.
Specifically, the role of the 3 × 3 convolution is to extract local spatial context and
quadruple the number of channels for channel mixing. Subsequently, the SE block is
employed to model inter-channel dependencies, adaptively adjusting the importance of
features among channels. Finally, the 1 × 1 convolution compresses the channel count
back to its original size.
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Fig. 5. The architectures of FMBConv and CAFM.

3.4 Feature Fusion Module

In general, peoplewidely believe that the outstanding performance ofVisual Transformer
(ViT) [7] is primarily attributed to the token mixer. However, recent research has shown
that replacing this token mixer with spatial MLP still maintains impressive results. This
leads to a conclusion: the success of ViT is attributed to the adoption of a general
architecture known as MetaFormer [26], which consists of a token mixer and a feed-
forward neural network. This paper similarly adopts this structure, integrating MFSM
and CAFM into a feature fusion module, formulated as:

Y = MFSM(LN(X )) + X (9)

Z = CAFM(LN(Y )) + Y (10)

whereLN(·) refers to theLayerNorm [25] layer andX ,Y andZ represent the intermediate
features.

4 Experiments

4.1 Experimental Setup

Datasets and Metrics. Similar to prior works [15–17], our training and validation
datasets consist of 3450 and 100 images respectively, sourced from the DIV2K [27]
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and Flickr2K [3] datasets. The LR images were derived from HR images using bicubic
downsampling. For evaluation, we employ five commonly used benchmark datasets [28–
32]. To assess the quality of the reconstructed images, two standard evaluationmetrics are
utilized: PSNR and SSIM [33]. These measurements are computed using the Y channel
within the YCbCr color space, obtained through conversion from the RGB color space.

Implementation Details. The configuration of the CFMN involves setting the number
of FFMs to 8 and the level of SM to 3. During the training phase, we extract 64 patches
of 64 × 64 pixels at random from the LR images for each mini-batch. To enhance the
diversity of the input patches, we perform data augmentation by randomly flipping it
horizontally and vertically and then rotating it. The CFMN is trained by the Adam [34]
optimizer with the momentum parameters β1 = 0.9 and β2 = 0.99. The training starts
with the initial learning rate of 1 × 10−3 and progressively decreases to a minimum
of 1 × 10−5, utilizing the Cosine Annealing strategy [35] for updates. The network is
implemented by the PyTorch framework and trained with 2 Nvidia RTX 2080Ti GPUs.

4.2 Comparison to Other Methods

Quantitative Evaluation. To comprehensively assess the performance of the CFMN,
we contrast it with a series of state-of-the-art lightweight image super-resolution mod-
els. These models include IMDN [14], PAN [15], LAPAR [16], SMSR [18], and Shuf-
fleMixer [17]. Presents the quantitative evaluation results on the commonly used SR
image benchmarks. Apart from using PSNR and SSIM metrics, we have provided the
parameter count and computational complexity to assess the performance and complex-
ity of themodel. These calculations are based on upsampling a LR image to aHR of 1280
× 720 pixels. Thanks to its simple and efficient structural design, the proposed CFMN
model exhibits significant advantages in terms of both parameter count and computa-
tional complexity. Taking× 4 SR as an example, CFMN reduces the number of parame-
ters by up to 59% (295K vs. 715K) and significantly reduces computational complexity
by 66% (14G vs. 41G) compared to IMDN. However, CFMN maintains comparable
performance to IMDN, fully demonstrating the effectiveness and efficiency of its struc-
tural design. In addition, compared to ShuffleMixer, which is also a lightweight model,
CFMN reduces the number of parameters by 28% (295K vs. 411K) and reduces com-
putational complexity by 50% (14G vs. 28G). The results prove that CFMN effectively
reduces model complexity and computational cost while maintaining high performance
(Table 1).

Qualitative Evaluation. Besides quantitative evaluation, we also conduct a qualitative
comparison of the proposed method. Figure 6 presents the visual comparison results on
the Urban100 dataset for × 4 SR. It can be clearly observed that, compared to other
lightweight models, the CFMN exhibits higher accuracy in generating parallel lines and
grid patterns. The accurate reproduction of these fine structures is crucial for super-
resolution tasks as they directly impact the clarity and overall visual effect of the image.
Therefore, it can be concluded that the CFMN possesses significant advantages in detail
recovery and structure preservation.
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Table 1. Comparison of efficient SR models. ‘-’ represents unreported results

Model Scale Params FLOPs Set5 Set14 BSD100 Urban100 Manga109

IMDN [14] ×2 694K 161G 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774

PAN [15] 261K 71G 38.00/0.9605 33.59/0.9181 32.18/0.8997 32.01/0.9273 38.70/0.9773

LAPAR-A
[16]

548K 171G 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772

SMSR [18] 985K 132G 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771

ShuffleMixer
[17]

394K 91G 38.01/0.9606 33.63/0.9180 32.17/0.8995 31.89/0.9257 38.83/0.9774

CFMN(Ours) 283K 54G 38.00/0.9604 33.57/0.9179 32.17/0.8994 31.82/0.9254 38.69/0.9770

IMDN [14] ×3 703K 72G 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445

PAN [15] 261K 39G 34.40/0.9271 30.36/0.8423 29.11/0.8050 28.11/0.8511 33.61/0.9448

LAPAR-A
[16]

594K 114G 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441

SMSR [18] 993K 68G 34.40/0.9270 30.33/0.8412 29 10/0 8050 28.25/0.8536 33.68/0.9445

ShuffleMixer
[17]

415K 43G 34.40/0.9272 30.37/0.8423 29.12/0.8051 28.08/0.8498 33.69/0.9448

CFMN(Ours) 288K 24G 34.35/0.9268 30.35/0.8413 29.09/0.8047 27.97/0.8482 33.50/0.9439

IMDN [14] ×4 715K 41G 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075

PAN [15] 261K 22G 32.13/0.8948 28.61/0.7822 27.59/0.7363 26.11/0.7854 30.51/0.9095

LAPAR-A
[16]

659K 94G 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074

SMSR [18] 1006K 42G 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085

ShuffleMixer
[17]

411K 28G 32.21/0.8953 28.66/0.7827 27.61/0.7366 26.08/0.7835 30.65/0.9093

CFMN(Ours) 295K 14G 32.18/0.8946 28.61/0.7815 27.56/0.7354 26.01/0.7826 30.42/0.9071

Fig. 6. Visual comparison of other SR models on the Urban100 dataset for × 4 SR



24 W. Zhang et al.

4.3 Ablation

To validate the influence of each module and its internal design, we conduct more
detailed ablation experiments. The results of the experiments are presented in Table 2.
In all experiments, we consistently adopt the same settings and measure performance on
the DIV2K validation dataset for× 4 SR. The parameters and computational complexity
are evaluated when enlarging a 320 × 180 image to 1280 × 720 to ensure the accuracy
and consistency of the evaluation.

Multi-Scale Feature Spatial Modulation. Removing the MFSM module leads to a
0.17 dB decrease in PSNR on the DIV2K-val dataset, emphasizing the effectiveness of
thismodule in enhancing super-resolution performance.Additional ablation experiments
reveal that utilizing a single spatial modulationwithout multi-scale fusion reduces PSNR
by 0.04 dB while increasing parameters and computational cost. Furthermore, removing
the gating mechanism for adaptive adjustment also results in a 0.07 dB PSNR drop.
Meanwhile, the introduction of average contextual features can also bring a 0.03 dB
improvement in performance. These findings underscore the contributions of both the
multi-scale and gated mechanisms in improving model performance while maintaining
efficiency.

Channel Attention Fusion Module. The absence of the CAFM module causes a
notable 0.7 dB decrease in PSNR, confirming its effectiveness in super-resolution tasks.
When only channel fusion is performed without considering channel attention, there
was a slight 0.06 dB drop in PSNR, indicating the importance of attention mechanisms.
Furthermore, when we use MLP instead of CAFM, the PSNR decreases by 0.23 dB,
proving the advantage of CAFM in improving SR performance.

Normalization. Through experiments comparison, the results indicate that LayerNorm
[25] is more suitable for super-resolution tasks than BatchNorm [24].

Table 2. Ablation experiments of CFMN on the DIV2K-val dataset for × 4 SR.

Ablation Variant Params FLOPs DIV2K-val

Main Module MFSM → None 247K 12.93G 30.28/0.8351

CAFM → None 65K 2.24G 29.75/0.8254

MFSM w/o Multi-scale Fusion 315K 16.78G 30.41/0.8367

w/o Gated Matrix 294K 14.19G 30.38/0.8359

w/o Average Context 295K 14.31G 30.42/0.8365

CAFM w/o SE Block 274K 14.19G 30.39/0.8362

CAFM → MLP 150K 7.02G 30.22/0.8328

Normalization LN → BN 295K 14.22G 30.29/0.8345

CFMN(Ours) - 295K 14.36G 30.45/0.8375
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5 Conclusion

In this paper, we propose the Contextual Feature Modulation Network for efficient
SR reconstruction. Specifically, MFSM captures richer attention information through a
multi-scale mechanism. Additionally, it extracts contextual features at various granular-
ities using depth-wise convolutions and employs gated convolution to select notable fea-
tures. Furthermore, CAFM complements the extraction of local contextual features and
further introduces the SE Block for channel attention and fusion. Experiments on com-
monly used benchmark datasets demonstrate that the CFMNmaintains the performance
of existing methods while having lower parameters and computational costs.

Acknowledgment. This work was supported in part by the National Natural Science Foundation
of China under Grant 61976079, in part by Guangxi Key Research and Development Program
under Grant AB22035022, and in part by Anhui Key Research and Development Program under
Grant 202004a05020039.

References

1. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional
networks. TPAMI 38(2), 295–307 (2015)

2. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional
networks. In: CVPR, pp. 1646−1654 (2016)

3. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single
image super-resolution. In: CVPRW, pp. 136–144 (2017)

4. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-
resolution. In: CVPR, pp. 2472–2481 (2018)

5. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep
residual channel attention networks. In: ECCV, pp. 286–301 (2018)

6. Chen,H., et al.: Pre-trained image processing transformer. In:CVPR, pp. 12299–12310 (2021)
7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition

at scale. arXiv preprint arXiv:2010.11929 (2020)
8. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: image restoration

using swin transformer. In: ICCV, pp. 1833–1844 (2021)
9. Yang, J., Li, C., Dai, X., Gao, J.: Focal modulation networks. NeurIPS 35, 4203–4217 (2022)
10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)
11. Li, W., Lu, X., Qian, S., Lu, J., Zhang, X., Jia, J.: On efficient transformer-based image

pre-training for low-level vision. arXiv preprint arXiv:2112.10175 (2021)
12. Li, Y., Fan, Y., Xiang, X., Demandolx, D., Ranjan, R., Timofte, R., Van Gool, L.: Efficient and

explicit modelling of image hierarchies for image restoration. In: CVPR. pp. 18278–18289
(2023)

13. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In:
ICCV, pp. 10012–10022 (2021)

14. Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with information
multi-distillation network. In: ACM MM, pp. 2024–2032 (2019)

15. Zhao, H., Kong, X., He, J., Qiao, Y., Dong, C.: Efficient image super-resolution using pixel
attention. In: ECCVW. pp. 56–72. Springer (2020). https://doi.org/10.1007/978-3-030-670
70-2_3

http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2112.10175
https://doi.org/10.1007/978-3-030-67070-2_3


26 W. Zhang et al.

16. Li, W., Zhou, K., Qi, L., Jiang, N., Lu, J., Jia, J.: Lapar: Linearly-assembled pixel-adaptive
regression network for single image super-resolution and beyond. NeurIPS 33, 20343–20355
(2020)

17. Sun, L., Pan, J., Tang, J.: Shufflemixer: an efficient convnet for image super-resolution.
NeurIPS 35, 17314–17326 (2022)

18. Wang, L., et al.: Exploring sparsity in image super-resolution for efficient inference. In:CVPR,
pp. 4917–4926 (2021)

19. Shen, H., Zhao, Z.Q., Liao, W., Tian, W., Huang, D.S.: Joint operation and attention block
search for lightweight image restoration. PR 132, 108909 (2022)

20. Zhang, Y., Wang, H., Qin, C., Fu, Y.: Aligned structured sparsity learning for efficient image
super-resolution. NeurIPS 34, 2695–2706 (2021)

21. Shi, W.,et al.: Real-time single image and video super-resolution using an efficient sub-pixel
convolutional neural network. In: CVPR, pp. 1874–1883 (2016)

22. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint arXiv:1606.
08415 (2016)

23. Tan, M., Le, Q.: Efficientnetv2: smaller models and faster training. In: ICML, pp. 10096–
10106. PMLR (2021)

24. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift. In: ICML, pp. 448–456. PMLR (2015)

25. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450
(2016)

26. Yu, W., et al.: Metaformer is actually what you need for vision. In: CVPR, pp. 10819–10829
(2022)

27. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: Ntire 2017 challenge on
single image super-resolution: methods and results. In: CVPRW, pp. 114–125 (2017)

28. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-
image super-resolution based on nonnegative neighbor embedding. In: BMVC (2012)

29. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In:
ICCS, pp. 711–730. Springer (2012). https://doi.org/10.1007/978-3-642-27413-8_47

30. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image
segmentation. TPAMI 33(5), 898–916 (2010)

31. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-
exemplars. In: CVPR, pp. 5197–5206 (2015)

32. Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimed Tools
Appl. 76, 21811–21838 (2017)

33. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error
visibility to structural similarity. TIP 13(4), 600–612 (2004)

34. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:
1412.6980 (2014)

35. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983 (2016)

http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1607.06450
https://doi.org/10.1007/978-3-642-27413-8_47
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1608.03983

